Features

- Fast Read Access Time 45 ns
- Low Power CMOS Operation
 100 μA max. Standby

100 μA max. Standby 30 mA max. Active at 5 MHz

JEDEC Standard Packages
 44-Lead PLCC
 40-Lead TSOP (10mm x 14mm)

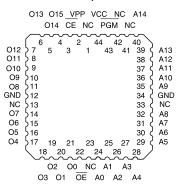
• 5V ± 10% Power Supply

 High Reliability CMOS Technology 2000V ESD Protection 200 mA Latchup Immunity

- Rapid Programming Algorithm 50 μs/word (typical)
- CMOS and TTL Compatible Inputs and Outputs
- Integrated Product Identification Code
- Commercial and Industrial Temperature Ranges

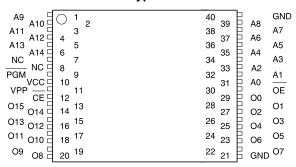
Description

The AT27C516 is a low-power, high performance 524,288 bit one-time programmable read only memory (OTP EPROM) organized 32K by 16 bits. It requires only one 5V power supply in normal read mode operation. Any word can be accessed in less than 45 ns, eliminating the need for speed reducing WAIT states. The by-16 organization make this part ideal for high-performance 16 and 32 bit microprocessor systems. *(continued)*


Pin Configurations

Pin Name	Function
A0 - A14	Addresses
O0 - O15	Outputs
CE	Chip Enable
ŌE	Output Enable
PGM	Program Strobe
NC	No Connect

Note: Both GND pins must


be connected.

PLCC Top View

Note: PLCC Package Pins 1 and 23 are DON'T CONNECT.

TSOP Top View Type 1

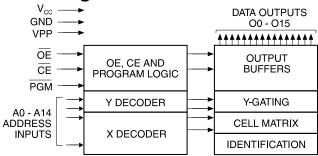
512K (32K x 16) OTP CMOS EPROM

0362C

Description (Continued)

In read mode, the AT27C516 typically consumes 15 mA. Standby mode supply current is typically less than 10 μ A.

The AT27C516 is available in industry standard JEDEC-approved one-time programmable (OTP) plastic PLCC and TSOP packages. The device features two-line control (CE, OE) to eliminate bus contention in high-speed systems.


With 32K word storage capability, the AT27C516 allows firmware to be stored reliably and to be accessed by the system without the delays of mass storage media.

Atmel's 27C516 have additional features to ensure high quality and efficient production use. The Rapid[™] Programming Algorithm reduces the time required to program the part and guarantees reliable programming. Programming time is typically only 50 µs/word. The Integrated Product Identification Code electronically identifies the device and manufacturer. This feature is used by industry standard programming equipment to select the proper programming algorithms and voltages.

System Considerations

Switching between active and standby conditions via the Chip Enable pin may produce transient voltage excursions. Unless accommodated by the system design, these transients may exceed data sheet limits, resulting in device non-conformance. At a minimum, a 0.1 μF high frequency, low inherent inductance, ceramic capacitor should be utilized for each device. This capacitor should be connected between the VCC and Ground terminals of the device, as close to the device as possible. Additionally, to stabilize the supply voltage level on printed circuit boards with large EPROM arrays, a 4.7 μF bulk electrolytic capacitor should be utilized, again connected between the VCC and Ground terminals. This capacitor should be positioned as close as possible to the point where the power supply is connected to the array.

Block Diagram

Absolute Maximum Ratings*

Temperature Under Bias55°C to +125°C
Storage Temperature65°C to +150°C
Voltage on Any Pin with Respect to Ground2.0V to +7.0V (1)
Voltage on A9 with Respect to Ground2.0V to +14.0V (1)
VPP Supply Voltage with Respect to Ground2.0V to +14.0V (1)

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note: 1. Minimum voltage is -0.6V dc which may undershoot to - 2.0V for pulses of less than 20 ns. Maximum output pin voltage is $V_{CC} + 0.75V$ dc which may overshoot to +7.0V for pulses of less than 20 ns.

Operating Modes

Mode \ Pin	CE	ŌE	PGM	Ai	Vpp	Outputs
Read	VIL	VIL	X ⁽¹⁾	Ai	Χ	Dout
Output Disable	Χ	V_{IH}	Χ	X	Χ	High Z
Standby	VIH	Χ	Χ	Χ	X ⁽⁵⁾	High Z
Rapid Program (2)	VIL	VIH	VIL	Ai	Vpp	DIN
PGM Verify	VIL	VIL	ViH	Ai	Vpp	Dout
PGM Inhibit	VIH	Χ	Χ	X	V_PP	High Z
Product Identification (4)	VIL	V_{IL}	X	A9 = V _H ⁽³⁾ A0 = V _{IH} or V _{IL} A1 - A14 = V _{IL}	Vcc	Identification Code

Notes: 1. X can be V_{IL} or V_{IH}.

2. Refer to Programming characteristics.

3. $V_H = 12.0 \pm 0.5 V$.

4. Two identifier words may be selected. All Ai inputs are held low (V_{IL}), except A9 which is set to V_H and A0 which is toggled low (V_{IL}) to select the Manufacturer's Identification word and high (V_{IH}) to select the Device Code word.

Standby V_{CC} current (I_{SB}) is specified with V_{PP} = V_{CC}. V_{CC} > V_{PP} will cause a slight increase in I_{SB}.

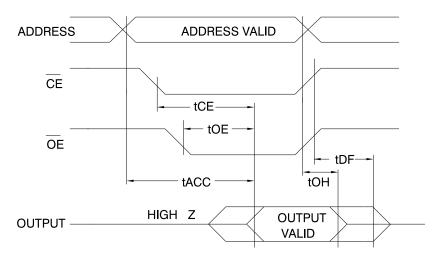
DC and AC Operating Conditions for Read Operation

				AT27C516		
		-45	-55	-70	-85	-10
Operating	Com.	0°C - 70°C				
Temperature (Case)	Ind.	-40°C - 85°C				
V _{CC} Power Supply		5V ± 10%				

DC and Operating Characteristics for Read Operation

Symbol	Parameter	Condition	Min	Max	Units
ILI	Input Load Current	$V_{IN} = 0V$ to V_{CC}		± 1	μΑ
ILO	Output Leakage Current	V _{OUT} = 0V to V _{CC}		± 5	μΑ
I _{PP1} (2)	V _{PP} ⁽¹⁾ Read/Standby Current	VPP = VCC		10	μΑ
I _{SB}	V _{CC} ⁽¹⁾ Standby Current	I _{SB1} (CMOS), $\overline{\text{CE}} = V_{\text{CC}} \pm 0.3V$		100	μΑ
128	VCC Standby Current	I_{SB2} (TTL), \overline{CE} = 2.0 to V_{CC} + 0.5 V		1	mΑ
Icc	Vcc Active Current	$f = 5 \text{ MHz}, I_{OUT} = 0 \text{ mA}, \overline{CE} = V_{IL}$		30	mA
VIL	Input Low Voltage		-0.6	0.8	V
VIH	Input High Voltage		2.0	Vcc + 0.5	V
VoL	Output Low Voltage	I _{OL} = 2.1 mA		0.4	V
Voн	Output High Voltage	I _{OH} = -400 μA	2.4		٧

Notes: 1. V_{CC} must be applied simultaneously or before V_{PP}, and removed simultaneously or after V_{PP}.

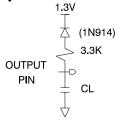

AC Characteristics for Read Operation

				AT27C516									
				45	-:	55	-7	70	-8	85		10	
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Units
tacc (3)	Address to Output Delay	$\overline{CE} = \overline{OE} = VIL$		45		55		70		85		100	ns
t _{CE} (2)	CE to Output Delay	OE = VIL		45		55		70		85		100	ns
toE (2, 3)	OE to Output Delay	CE = V _{IL}		20		25		25		30		30	ns
t _{DF} (4, 5)	OE or CE High to Output F whichever occurred first	loat,		20		25		25		30		30	ns
tон	Output Hold from Address, CE or OE, whichever occurred first		7		7		7		0		0		ns

Notes: 2, 3, 4, 5. - see AC Waveforms for Read Operation.

^{2.} V_{PP} may be connected directly to V_{CC} , except during programming. The supply current would then be the sum of I_{CC} and I_{PP} .

AC Waveforms for Read Operation (1)



- Notes: 1. Timing measurement reference level is 1.5V for -45 and -55 devices. Input AC drive levels are $V_{IL} = 0.0V$ and $V_{IH} = 3.0V$. Timing measurement reference levels for all other speed grades are $V_{OL} = 0.8V$ and $V_{OH} = 2.0V$. Input AC drive levels are $V_{IL} = 0.45V$ and $V_{IH} = 2.4V$.
 - OE may be delayed up to t_{CE} t_{OE} after the falling edge of CE without impact on t_{CE}.
- 3. OE may be delayed up to t_{ACC} t_{OE} after the address is valid without impact on t_{ACC} .
- 4. This parameter is only sampled and is not 100% tested.
- 5. Output float is defined as the point when data is no longer driven.

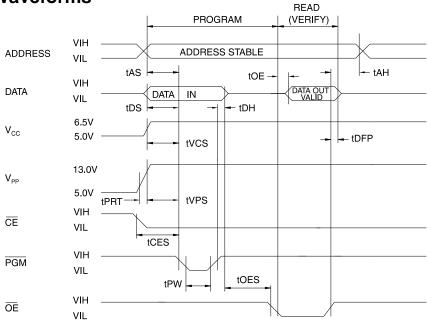
Input Test Waveforms and Measurement Levels

AC AC For -45, -55, and -70 DRIVING 1.5V **MEASUREMENT** Devices Only: **LEVELS** LEVEL t_R , $t_F < 5$ ns (10% to 90%) 2.4V 2.0 For -85 and -10 AC AC **DRIVING MEASUREMENT** Devices Only: **LEVELS** LEVEL t_R , $t_F < 20$ ns (10% to 90%)

Output Test Load

Note: CL = 100 pF including jig capacitance except -45, -55 and -70 devices, where CL = 30 pF.

Pin Capacitance (f = 1 MHz T = 25° C)


	Тур	Max	Units	Conditions	
C _{IN}	4	10	pF	$V_{IN} = 0V$	
Cout	8	12	pF	$V_{OUT} = 0V$	

Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

Programming Waveforms (1)

Notes: 1. The Input Timing Reference is 0.8V for V_{IL} and 2.0V for V_{IH} .

- 2. t_{OE} and t_{DFP} are characteristics of the device but must be accommodated by the programmer.
- 3. When programming the AT27C516 a 0.1 μF capacitor is required across V_{PP} and ground to suppress spurious voltage transients.

DC Programming Characteristics

 T_{A} = 25 \pm 5°C, V_{CC} = 6.5 \pm 0.25V, V_{PP} = 13.0 \pm 0.25V

		Test	L		
Symbol	Parameter	Conditions	Min	Max	Units
ILI	Input Load Current	$V_{IN} = V_{IL}, V_{IH}$		±10	μΑ
VIL	Input Low Level		-0.6	0.8	V
VIH	Input High Level		2.0	$V_{CC} + 0.1$	V
VoL	Output Low Voltage	$I_{OL} = 2.1 \text{ mA}$		0.4	V
VoH	Output High Voltage	$I_{OH} = -400 \mu A$	2.4		V
ICC2	V _{CC} Supply Current (Program and Verify)			50	mA
IPP2	V _{PP} Supply Current	$\overline{CE} = \overline{PGM} = V_{IL}$	·	30	mA
VID	A9 Product Identification Voltage		11.5	12.5	V

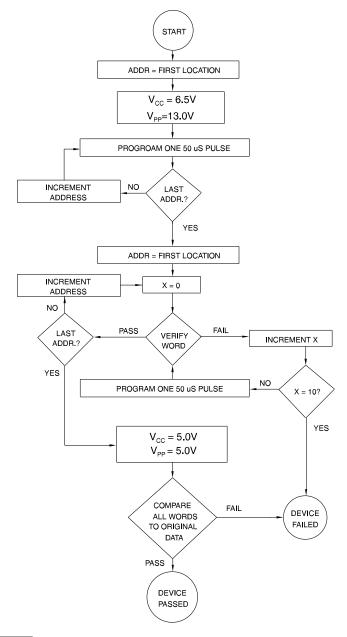
AC Programming Characteristics

 $T_A = 25 \pm 5$ °C, $V_{CC} = 6.5 \pm 0.25$ V, $V_{PP} = 13.0 \pm 0.25$ V

Sym-	Test	(4)	Lin		
bol	Parameter Condition	ıs* ⁽¹⁾	⁄lin	Max	Units
tas	Address Setup Time		2		μS
tces	CE Setup Time		2		μS
toes	OE Setup Time		2		μS
t _{DS}	Data Setup Time		2		μS
tah	Address Hold Time		0		μS
tDH	Data Hold Time		2		μS
t _{DFP}	OE High to Output Float Delay (2)		0	130	ns
typs	V _{PP} Setup Time		2		μS
tvcs	V _{CC} Setup Time		2		μS
tpw	PGM Program Pulse Width	า ⁽³⁾ 4	7.5	52.5	μS
toE	Data Valid from OE			150	ns
tprt	V _{PP} Pulse Rise Time Durin Programming	g	50		ns

*AC Conditions of Test:

Input Rise and Fall Times (10% to 90)%)20 ns
Input Pulse Levels	0.45V to 2.4V
Input Timing Reference Level	0.8V to 2.0V
Output Timing Reference Level	0.8V to 2.0V


- Notes: 1. V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after VPP.
 - 2. This parameter is only sampled and is not 100% tested. Output Float is defined as the point where data is no longer driven — see timing diagram.
 - 3. Program Pulse width tolerance is 50 μ sec \pm 5%.

Atmel's 27C516 Integrated Product Identification Code

		Pins								Hex	
Codes	Α0	0 015-08 O7 O6 O5 O4 O3 O2 O1 O0						Data			
Manufacturer	0	0	0	0	0	1	1	1	1	0	001E
Device Type	1	0	1	1	1	1	0	0	1	0	00F2

Rapid Programming Algorithm

A 50 µs PGM pulse width is used to program. The address is set to the first location. V_{CC} is raised to 6.5V and V_{PP} is raised to 13.0V. Each address is first programmed with one 50 µs PGM pulse without verification. Then a verification / reprogramming loop is executed for each address. In the event a word fails to pass verification, up to 10 successive 50 µs pulses are applied with a verification after each pulse. If the word fails to verify after 10 pulses have been applied, the part is considered failed. After the word verifies properly, the next address is selected until all have been checked. VPP is then lowered to 5.0V and Vcc to 5.0V. All words are read again and compared with the original data to determine if the device passes or fails.

Ordering Information

tACC	Icc	(mA)	Ordering Code	Doolsono	Oneretien Benne
(ns)	Active	Standby	Ordering Code	Package	Operation Range
45	30	0.1	AT27C516-45JC AT27C516-45VC	44J 40V	Commercial (0°C to 70°C)
	30	0.1	AT27C516-45JI AT27C516-45VI	44J 40V	Industrial (-40°C to 85°C)
55	30	0.1	AT27C516-55JC AT27C516-55VC	44J 40V	Commercial (0°C to 70°C)
	30	0.1	AT27C516-55JI AT27C516-55VI	44J 40V	Industrial (-40°C to 85°C)
70	30	0.1	AT27C516-70JC AT27C516-70VC	44J 40V	Commercial (0°C to 70°C)
	30	0.1	AT27C516-70JI AT27C516-70VI	44J 40V	Industrial (-40°C to 85°C)
85	30	0.1	AT27C516-85JC AT27C516-85VC	44J 40V	Commercial (0°C to 70°C)
	30	0.1	AT27C516-85JI AT27C516-85VI	44J 40V	Industrial (-40°C to 85°C)
100	30	0.1	AT27C516-10JC AT27C516-10VC	44J 40V	Commercial (0°C to 70°C)
	30	0.1	AT27C516-10JI AT27C516-10VI	44J 40V	Industrial (-40°C to 85°C)

Package Type	
44J	44 Lead, Plastic J-Leaded Chip Carrier (PLCC)
40V	40 Lead, Plastic Thin Small Outline Package (TSOP) (10mm x 14mm)