
Vishay Dale

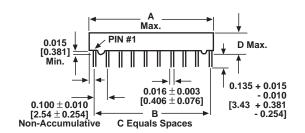
Thick Film Resistor Networks Single-In-Line, Molded SIP; 01, 03, 05 Schematics 6, 8, 9 or 10 Pin "A" Profile and 6, 8 or 10 Pin "C" Profile

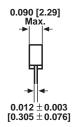
FEATURES

- 0.195" [4.95mm] "A" or 0.350" [8.89mm] "C" maximum seated height
- · Highly stable thick film
- Low temperature coefficient (- 55°C to + 125°C) ± 100ppm/°C
- Rugged, molded case construction
- Reduces total assembly costs
- · Compatible with automatic insertion equipment and reduces PC board space
- Wide resistance range
- Available in tube pack or side-by-side pack

STANDARD ELECTRICAL SPECIFICATIONS							
MODEL/ SCHEMATIC	PROFILE	RESISTOR POWER RATING Max. @ 70°C* W	RESISTANCE RANGE Ω	STANDARD TOLERANCE ± %	TEMPERATURE COEFFICIENT (- 55°C to + 125°C) ppm/°C	TCR TRACKING* (- 55°C to + 125°C) ppm/°C	OPERATING VOLTAGE Max. VDC
MSP01	A C	0.20 0.25	10 - 2.2M	2 Standard (1, 5, 10, 20)**	± 100	± 50ppm/°C	100
MSP03	A C	0.30 0.40	10 - 2.2M	2 Standard (1, 5, 10, 20)**	± 100	± 50ppm/°C	100
MSP05	A C	0.20 0.25	10 - 2.2M	± 2 Standard (± 5%)**	± 100	± 150ppm/°C	100

^{*} Tighter tracking available ** Tolerances in brackets available on request


TECHNICAL SPECIFICATIONS			
PARAMETER	UNIT	MSP SERIES	
Package Power Rating		See Derating Curves	
(Maximum at + 25°C and + 70°C			
Voltage Coefficient of Resistance	V _{eff}	< 50ppm typical	
Dielectric Strength	VAC	200	
Isolation Resistance (03 Schematic)	Ω	> 100M	
Operating Temperature Range	°C	- 55 to + 125	
Storage Temperature Range	°C	- 55 to + 150	


MECHANICAL SPECIFICATIONS				
Marking Resistance to Solvents:	Permanency testing per MIL-STD-202, Method 215.			
Solderability:	Per MIL-STD-202, Method 208E, RMA flux.			
Body:	Molded epoxy.			
Terminals:	Copper alloy, tin-lead plated.			
Weight:	MSP06A = 0.4 gram			

Thick Film Resistor Networks, Single-In-Line, Molded SIP

Vishay Dale

DIMENSIONS in inches [millimeters]

MODEL	A (Max.)	В	С	D (Max.)
MSP06	0.590 [14.99]	0.500 [12.70]	5	MSDvvA = 0.405 [4.05]
MSP08	0.790 [20.07]	0.700 [17.78]	7	MSPxxA = 0.195 [4.95] MSPxxC = 0.350 [8.89]
MSP10	0.990 [25.15]	0.900 [22.86]	9	
MSP09	0.890 [22.61]	0.800 [20.32]	8	0.195 [4.95] ONLY

ORDER	RING INFORMATION	ON				
01 Scher	matic					
MSP MODEL	08 NUMBER OF PINS	A PACKAGE (CODE	01 SCHEMATIC	101 RESISTANCE VALUE	G TOLERANCE
Tino		0.100" [2.54mm C =0.350" [8.89mm	=0.195" [4.95mm] Height 0.100" [2.54mm] Lead Spacing =0.350" [8.89mm] Height 0.100" [2.54mm] Lead Spacing		First 2 digits (3 for "F" F tolerance) are significant figures. Last digit specifies number of zeros to follow.	
03 Scher	natic					
MSP	06	A		03	102	G
MODEL		PACKAGE C	ODE	SCHEMATIC	RESISTANCE VALUE	TOLERANCE
	PINS	0.100" [2.54m C =0.350" [8.89m	0.195" [4.95mm] Height 0.100" [2.54mm] Lead Spacing 0.350" [8.89mm] Height 0.100" [2.54mm] Lead Spacing		First 2 digits (3 for "F" tolerance) are significant figures. Last digit specifies number of zeros to follow.	$F = \pm 1\%$ $G = \pm 2\%$ $J = \pm 5\%$
05 Scher	matic					
MSP	06	Α	05	221	331	G
MODEL	DINIS	PACKAGE CODE 95" [4.95mm] Height	SCHEMAT	C RESISTANO VALUE R		TOLERANCE
	0.10 C =0.39	50" [2.54mm] Lead Spa 50" [8.89mm] Height 50" [2.54mm] Lead Spa	· ·		gits are significant figures. pecifies the number of ow.	$G = \pm 2\%$ $J = \pm 5\%$
EXAMPLE:		EXAMPLE:			EXAMPLE:	
line thick fil on 0.100" [2	1-101G = A molded single m resistor network with 8 p 2.54mm] centers, 0.195" naximum seated height, 01	oins line thick film on 0.100" [2	MSP06A-03-102G = A molded single-in- line thick film resistor network with 6 pins on 0.100" [2.54mm] centers, 0.195" Union [2.54mm] centers, 0.195" Union [2.54mm] centers, 0.195" Union [2.54mm] centers, 0.195 Union [k with 6 pins on 95" [4.95mm]

and a tolerance of \pm 2%.

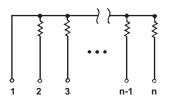
Schematic, resistance value of 100 ohm

Schematic, resistance value of 1000 ohm

and a tolerance of \pm 2%.

resistances of R1 = 220 ohm and R2 = 330

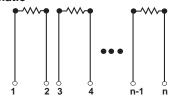
ohm and a tolerance \pm 2%.


Vishay Dale

Thick Film Resistor Networks, Single-In-Line, Molded SIP

CIRCUIT APPLICATIONS

01 Schematic

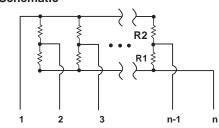

5, 7, 8* or 9 resistors with one pin common

The MSPxxx-01 circuit contains 5, 7, 8* or 9 nominally equal resistors, each connected between a common pin (Pin No. 1) and a discrete PC board pin. Commonly used in the following applications:

- "Wired OR" Pull-up
- MOS/ROM Pull-up/Pull-down
- Power Gate Pull-up
- Open Collector Pull-up
- TTL Input Pull-down
- TTL Unused Gate Pull-up
- * Available in "A" Profile only

Standard E-24 resistance values stocked. Consult factory.

03 Schematic



3, 4 or 5 isolated resistors

The MSPxxx-03 circuit contains 3, 4 or 5 resistors of nominally equal value in a compact package. Each resistor is connected to two discrete PC pins.

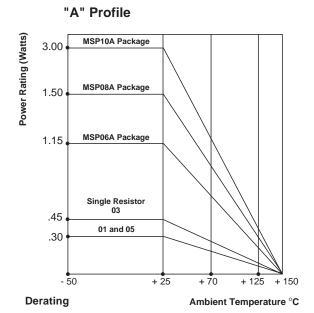
Standard E-24 resistance values stocked. Consult factory.

05 Schematic

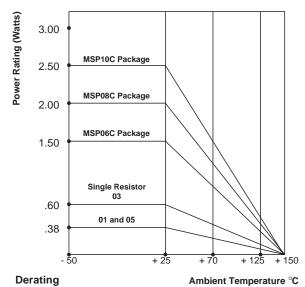
Pulse squaring and TTL dual-line terminators

The MSPxxx-05 circuits contain 4, 6, 7* or 8 series pair of resistors. Each series pair is connected between two common lines. The junction of these resistor pairs is connected to the input terminals.

The 05 circuits are designed for TTL dual-line termination and pulse


* Available in "A" Profile only

Many dual terminator resistance values stocked. Consult factory.



Thick Film Resistor Networks, Single-In-Line, Molded SIP

Vishay Dale

"C" Profile

"A" PROFILE + 70°C PACKAGE RATINGS				
MSP10A	1.25 watts			
MSP09A	1.12 watts			
MSP08A	1.00 watts			
MSP06A	0.75 watts			

"C" PROFILE + 70°C PACKAGE RATINGS				
MSP10C	1.60 watts			
MSP08C	1.30 watts			
MSP06C	1.00 watts			

Higher power ratings available. Contact factory.

PERFORMANCE					
TEST	CONDITIONS	MAX. ∆R (Typical Test Lots)			
Power Conditioning	1.5 x rated power, applied 1.5 hours "ON" and 0.5 hour "OFF" for 100 hours \pm 4 hours at + 25°C ambient temperature	± 0.50% ΔR			
Thermal Shock	5 cycles between - 65°C and + 125°C	± 0.50% ΔR			
Short Time Overload	2.5 x rated working voltage 5 seconds	± 0.25% ΔR			
Low Temperature Operation	45 minutes at full rated working voltage at - 65°C	± 0.25% ΔR			
Moisture Resistance	240 hours with humidity ranging from 80% RH to 98% RH	± 0.50% ΔR			
Resistance to Soldering Heat	Leads immersed in + 260°C solder to within 1/16" of device body for 10 seconds	± 0.25% ΔR			
Shock	Total of 18 shocks at 100 G's	± 0.25% ΔR			
Vibration	12 hours at maximum of 20 G's between 10 and 2,000 Hz	± 0.25% ΔR			
Load Life	1000 hours at + 70°C, rated power applied 1.5 hours "ON", 0.5 hour "OFF" for full 1,000 hour period. Derated according to the curve.	± 1.00% ΔR			
Terminal Strength	4.5 pound pull for 30 seconds	± 0.25% ΔR			
Insulation Resistance	10,000 Megohm (minimum)	_			
Dielectric Withstanding Voltage		_			