8-Bit Addressable Latch

The SN74LS259 is a high-speed 8-Bit Addressable Latch designed for general purpose storage applications in digital systems. It is a multifunctional device capable of storing single line data in eight addressable latches, and also a 1-of-8 decoder and demultiplexer with active HIGH outputs. The device also incorporates an active LOW common Clear for resetting all latches, as well as, an active LOW Enable.

- Serial-to-Parallel Conversion
- Eight Bits of Storage With Output of Each Bit Available
- Random (Addressable) Data Entry
- Active High Demultiplexing or Decoding Capability
- Easily Expandable
- Common Clear

GUARANTEED OPERATING RANGES

Symbol	Parameter	Min	Тур	Max	Unit
V _{CC}	Supply Voltage	4.75	5.0	5.25	V
T _A	Operating Ambient Temperature Range	0	25	70	°C
I _{OH}	Output Current – High			-0.4	mA
I _{OL}	Output Current – Low			8.0	mA

ON Semiconductor

Formerly a Division of Motorola

http://onsemi.com

LOW POWER SCHOTTKY

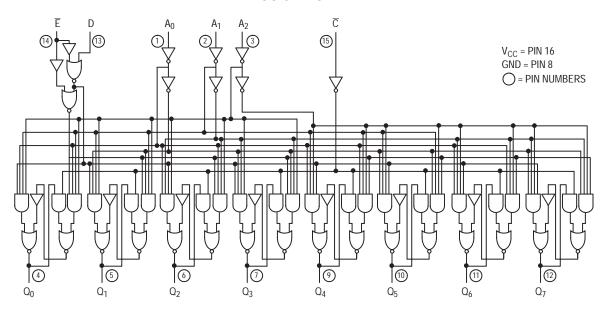
PLASTIC N SUFFIX CASE 648

SOIC D SUFFIX CASE 751B

ORDERING INFORMATION

Device	Package	Shipping		
SN74LS259N	16 Pin DIP	2000 Units/Box		
SN74LS259D	16 Pin	2500/Tape & Reel		

CONNECTION DIAGRAM DIP (TOP VIEW)



		LOADING	(Note a)
PIN NAMES		HIGH	LOW
A ₀ , A ₁ , A ₂	Address Inputs Data Input	0.5 U.L. 0.5 U.L.	0.25 U.L. 0.25 U.L.
<u>Ε</u> C Q ₀ – Q ₇	Enable (Active LOW) Input Clear (Active LOW) Input Parallel Latch Outputs	1.0 U.L. 0.5 U.L. 10 U.L.	0.5 U.L. 0.25 U.L. 5 U.L.

NOTES:

a) 1 TTL Unit Load (U.L.) = 40 μ A HIGH/1.6 mA LOW.

LOGIC DIAGRAM

FUNCTIONAL DESCRIPTION

The SN74LS259 has four modes of operation as shown in the mode selection table. In the addressable latch mode, data on the Data line (D) is written into the addressed latch. The addressed latch will follow the data input with all non-addressed latches remaining in their previous states. In the memory mode, all latches remain in their previous state and are unaffected by the Data or Address inputs.

In the one-of-eight decoding or demultiplexing mode, the addressed output will follow the state of the D input with all

other inputs in the LOW state. In the clear mode all outputs are LOW and unaffected by the address and data inputs.

When operating the SN74LS259 as an addressable latch, changing more then one bit of the address could impose a transient wrong address. Therefore, this should only be done while in the memory mode.

The truth table below summarizes the operations.

MODE SELECTION

TRUTH TABLE PRESENT OUTPUT STATES

E	С	MODE
L	Н	Addressable Latch
Н	Н	Memory
L	L	Active HIGH Eight-Channel Demultiplexer
Н	L	Clear

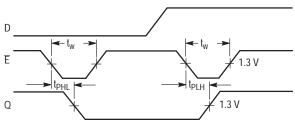
C	Ē	D	A_0	A_1	A_2	Q_0	Q_1	Q_2	Q_3	Q_4	Q_5	Q_6	Q_7	MODE
L	Н	Χ	Χ	Χ	Χ	L	L	L	L	L	L	L	L	Clear
L	L	L	L	L	L	L	L	L	L	L	L	L	L	Demultiplex
L	L	Н	L	L	L	Н	L	L	L	L	L	L	L	
L	L	L	Н	L	L	L	L	L	L	L	L	L	L	
L	L	Н	Н	L	L	L	Н	L	L	L	L	L	L	
•	•	•		•					•					
•	•	•		•					•					
•	•	•		•					•					
•	•	•		•					•					
•	•	•		•					•					
L	L	Н	Н	Н	Н	L	L	L	L	L	L	L	Н	
Н	Н	Χ	Χ	Χ	Χ	Q _{N-1}							•	Memory
Н	Ι	Ι	L	L	L	L	Q_{N-1}	Q_{N-1}	Q _{N-1} -				—	Addressable
Н	L	Н	L	L	L	Н	Q_{N-1}	Q_{N-1} -					-	Latch
Н	L	L	Н	L	L	Q_{N-1}	L	Q_{N-1}					-	
Н	L	Н	Н	L	L	Q _{N-1}	Н	Q_{N-1} -					-	
•	•	•		•					•					
•	•	•		•					•					
•	•	•		•					•					
•	•	•		•					•					
•	•	•		•					•					
H	L	L	Н	Н	Н	Q_{N-1}					_	Q_{N-1}	L	
Н	L	Н	Н	Н	Н	Q_{N-1}						Q_{N-1}	Н	

$$\begin{split} & X = Don't \ Care \ Condition \\ & L = LOW \ Voltage \ Level \\ & H = HIGH \ Voltage \ Level \\ & Q_{N-1} = Previous \ Output \ State \end{split}$$

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

		Limits						
Symbol	Parameter	Min	Тур	Max	Unit	Tes	t Conditions	
V _{IH}	Input HIGH Voltage	2.0			V	Guaranteed Inpu	t HIGH Voltage for	
V _{IL}	Input LOW Voltage			0.8	V	Guaranteed Inpu	t LOW Voltage for	
V _{IK}	Input Clamp Diode Voltage		-0.65	-1.5	V	V _{CC} = MIN, I _{IN} =	–18 mA	
V _{OH}	Output HIGH Voltage	2.7	3.5		٧	$V_{CC} = MIN$, $I_{OH} = MAX$, $V_{IN} = V_{IH}$ or V_{IL} per Truth Table		
	Output LOW Voltage		0.25	0.4	V	I _{OL} = 4.0 mA	$V_{CC} = V_{CC} MIN,$	
V _{OL}			0.35	0.5	V	I _{OL} = 8.0 mA	$V_{IN} = V_{IL}$ or V_{IH} per Truth Table	
1	lancet I II Cl I Commant			20	μΑ	V _{CC} = MAX, V _{IN} :	= 2.7 V	
I _{IH}	Input HIGH Current			0.1	mA	V _{CC} = MAX, V _{IN} = 7.0 V		
I _{IL}	Input LOW Current			-0.4	mA	V _{CC} = MAX, V _{IN} = 0.4 V		
I _{OS}	Short Circuit Current (Note 1)	-20		-100	mA	V _{CC} = MAX		
I _{CC}	Power Supply Current			36	mA	V _{CC} = MAX		

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.


AC CHARACTERISTICS ($T_A = 25^{\circ}C$, $V_{CC} = 5.0 \text{ V}$)

		Limits				
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
t _{PLH} t _{PHL}	Turn-Off Delay, Enable to Output Turn-On Delay, Enable to Output		22 15	35 24	ns ns	
t _{PLH}	Turn-Off Delay, Data to Output Turn-On Delay, Data to Output		20 13	32 21	ns ns	C _L = 15 pF
t _{PLH} t _{PHL}	Turn-Off Delay, Address to Output Turn-On Delay, Address to Output		24 18	38 29	ns ns	
t _{PHL}	Turn-On Delay, Clear to Output		17	27	ns	

AC SET-UP REQUIREMENTS ($T_A = 25$ °C, $V_{CC} = 5.0 \text{ V}$)

		Limits			
Symbol	Parameter	Min	Тур	Max	Unit
t _s	Input Setup Time	20			ns
t _W	Pulse Width, Clear or Enable	15			ns
t _h	Hold Time, Data	5.0			ns
t _h	Hold Time, Address	20			ns

AC WAVEFORMS

OTHER CONDITIONS: $\overline{C} = H$, A = STABLE

Figure 1. Turn-on and Turn-off Delays, Enable To Output and Enable Pulse Width

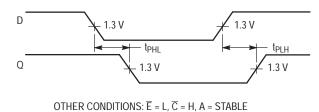
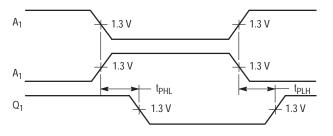
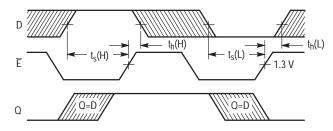




Figure 2. Turn-on and Turn-off Delays,
Data to Output

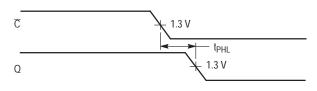

OTHER CONDITIONS: $\overline{E} = L$, $\overline{C} = L$, D = H

Figure 3. Turn-on and Turn-off Delays, Address to Output

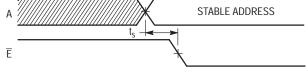
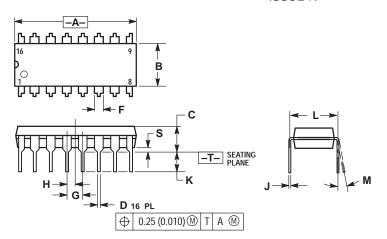

OTHER CONDITIONS: $\overline{C} = H$, A = STABLE

Figure 4. Setup and Hold Time, Data to Enable

OTHER CONDITIONS: $\overline{E} = H$

Figure 5. Turn-on Delay, Clear to Output

OTHER CONDITIONS: $\overline{C} = H$

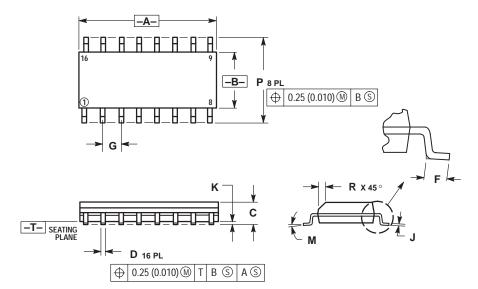

Figure 6. Setup Time, Address to Enable (See Notes 1 and 2)

NOTES:

- 1. The Address to Enable Setup Time is the time before the HIGH-to-LOW Enable transition that the Address must be stable so that the correct latch is addressed and the other latches are not affected.
- 2. The shaded areas indicate when the inputs are permitted to change for predictable output performance.

PACKAGE DIMENSIONS

N SUFFIX PLASTIC PACKAGE CASE 648-08 ISSUE R



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
 5. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
С	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100	BSC	2.54 BSC		
Н	0.050	BSC	1.27 BSC		
J	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
М	0°	10 °	0°	10 °	
S	0.020	0.040	0.51	1.01	

PACKAGE DIMENSIONS

D SUFFIX PLASTIC SOIC PACKAGE CASE 751B-05 **ISSUE J**

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.

 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.

 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INCHES					
DIM	MIN	MAX	MIN	MAX				
Α	9.80	10.00	0.386	0.393				
В	3.80	4.00	0.150	0.157				
С	1.35	1.75	0.054	0.068				
D	0.35	0.49	0.014	0.019				
F	0.40	1.25	0.016	0.049				
G	1.27	BSC	0.050	BSC				
J	0.19	0.25	0.008	0.009				
K	0.10	0.25	0.004	0.009				
M	0 °	7°	0°	7°				
Р	5.80	6.20	0.229	0.244				
R	0.25	0.50	0.010	0.019				

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

North America Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

German Phone: (+1) 303–308–7140 (M–F 2:30pm to 5:00pm Munich Time)
Email: ONlit–german@hibbertco.com

nch Phone: (+1) 303–308–7141 (M–F 2:30pm to 5:00pm Toulouse Time)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (M–F 1:30pm to 5:00pm UK Time)

Email: ONlit@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong 800–4422–3781

Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549

Phone: 81–3–5487–8345 **Email**: r14153@onsemi.com

Fax Response Line: 303-675-2167

800-344-3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.