User’s Manual, V3.1, Feb. 2002

. i
.4 -
i
- g ?
& — A

C164CI/CL
- C164SI/SL

16-Bit Single-Chip Micre

Microcontrollers

o~

< Infineon
technologies

Never stop thinking.

Edition 2002-02

Published by Infineon Technologies AG,
St.-Martin-Strasse 53,
D-81541 Miinchen, Germany

© Infineon Technologies AG 2002.
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted
characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding
circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide.

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in
question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.

User’s Manual, V3.1, Feb. 2002

C164CI/CL
C164SI1/SL

16-Bit Single-Chip Microcontroller

Microcontrollers

o~

Infineon
technologies

h

Never stop thinking.

C164CI

Revision History: V3.1, 2002-02
Previous Version: V3.0, 2002-01 (intermediate version)
V2.0, 1999-09
V1.1, 1998-08
V1.0, 11.97 (last printed version)
Page Subjects (major changes from V2.0, 1999-09 to V3.0, 2002-01)
all Converted to new company layout, figures have been redrawn
2-9 Description of EEPROM removed
3-9 Description of external XRAM access removed
5-3 Interrupt nodes 52 ... 55, 60, 65, 68 ... 70 removed
5-6 Description added for Interrupt Enable Control Bit
6-1ff Minor improvements in the description
7-4ff Description of Port “Output Driver Control” reworked
8-2 Vpp function added to pin EA/Vpp
9-28 XBUS interface description improved
10-6 GPT timing tables improved
11-12ff Description of ASCO baudrate generation improved
12-13 Description of SSC baudrate generation improved
13-5 Table “Watchdog Time Ranges” improved
15-1ff Chapter “Bootstrap Loader” reworked
16-1, 16-23 | Surplus interrupt control registers removed
16-7 More frequency tables added
17-2, 17-18ff | Trap functionality defined for reduced CAPCOMBG6 version
17-4 Section “Clocking Scheme” removed
17-16 Block commutation sequence corrected
17-18 Description of Trap function improved
23-4, 23-11 Register description marks improved,

surplus interrupt control registers removed

C164CI

Revision History: V3.1, 2002-02 (cont’d)
Previous Version: V3.0, 2002-01 (intermediate version)
V2.0, 1999-09
V1.1, 1998-08
V1.0, 11.97 (last printed version)
Page Subjects (major changes from V3.0, 2002-01 to V3.1, 2002-02)1)
Several Typos corrected
5-2 Number of interrupt nodes corrected
19-36 Figure corrected
23-4ff Register XP11C removed
24-1 Page header corrected

) No functional changes were incorporated here. V3.1 was introduced to correct some errors and to improve the
layout for printing.

Note: This revision history does not list changes beyond revision V2.0.
This also excludes V1.0, the last printed version.

Controller Area Network (CAN): License of Robert Bosch GmbH

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:

mcdocu.comments @infineon.com

—

|nfine0n C164CIl/C164SI

echnologies Derivatives
Table of Contents Page
1 Introduction 1-1
1.1 Members of the 16-bit Microcontroller Family 1-3
1.2 Summary of Basic Features i i, 1-5
1.3 Abbreviations 1-8
2 Architectural Overview 2-1
2.1 Basic CPU Concepts and Optimizations 2-2
211 High Instruction Bandwidth / Fast Execution 2-3
21.2 Programmable Multiple Priority Interrupt System 2-7
2.2 On-Chip System Resourceso i, 2-8
2.3 On-Chip Peripheral Blocks 2-11
2.4 Power Management Features 2-18
25 Protected Bits 2-20
3 Memory Organization 3-1
3.1 Internal ROM Area e 3-3
3.2 Internal RAMand SFR Area 3-4
3.3 The On-Chip XRAM ... e 3-9
3.4 External Memory Space 3-10
3.5 Crossing Memory Boundaries 3-11
3.6 Protection of the On-Chip Mask ROM 3-12
3.7 OTP Memory Programmingt 3-13
3.71 Selecting an OTP ProgrammingMode 3-15
3.7.2 OTP Module ADAressing e 3-17
3.7.3 Read Protection Control, 3-20
4 Central Processing Unit (CPU) 4-1
41 Instruction Pipelining 4-3
4.2 Particular Pipeline Effects 4-6
4.3 Bit-Handling and Bit-Protection 4-10
4.4 Instruction State Times 4-11
4.5 CPU Special Function Registers, 4-12
5 Interrupt and Trap Functions 5-1
5.1 Interrupt System Structure 5-2
5.1.1 Interrupt Control Registers 5-5
5.2 Operation of the PEC Channels 5-11
5.3 Prioritization of Interrupt and PEC Service Requests 5-15
5.4 Saving Status during Interrupt Service L. 5-17
55 Interrupt Response Times i 5-19
5.6 PEC Response Timest 5-22
5.7 Interrupt Node Sharing 5-24
5.8 External Interrupts 5-25
5.9 Trap Functions 5-31
User’s Manual -1 V3.1, 2002-02

—

C164Cl/C164SI
Derivatives

7.4 PORTO
7.5 PORTT
7.6 Port3
7.7 Port4
7.8 Port5
7.9 Port8

9.3 Programmable Bus Characteristics
9.4 Controlling the External Bus Controller

9.6.1 Accessing the On-chip XBUS Peripherals
9.6.2 External Accesses to XBUS Peripherals

10 General Purpose Timer Unit

10.1.2 GPT1 Auxiliary Timers T2 and T4
10.1.3 Interrupt Control for GPT1 Timers

11 Asynchronous/Synchronous Serial Interface

Inﬁqeon

ec no Ogy
Table of Contents
6 Clock Generation
6.1 Oscillator
6.2 Frequency Control
6.3 Oscillator Watchdog
6.4 Clock Drivers
7 Parallel Ports
7.1 Input Threshold Control
7.2 Output Driver Control
7.3 Alternate Port Functions
8 Dedicated Pins
9 External Bus Interface
9.1 Single Chip Mode
9.2 External Bus Modes
9.5 EBC Idle State
9.6 The XBUS Interface
10.1 Timer Block GPT1
10.1.1 GPT1 Core Timer T3
11.1 Asynchronous Operation
11.2 Synchronous Operation

11.3 Hardware Error Detection Capabilities
11.4 ASCO Baud Rate Generation
11.5 ASCO Interrupt Control

12 High-Speed Synchronous Serial Interface
12.1 Full-Duplex Operation
12.2 Half-Duplex Operation

User’s Manual

V3.1, 2002-02

—

Infineon
ec no Ogy

C164Cl/C164SI
Derivatives

Table of Contents

12.3
12.4
12.5
12.6
12.7

13
13.1
13.2

14

15

15.1
15.2
15.3
15.4

16

16.1
16.2
16.3
16.4
16.5
16.6

17
171
17.2
17.3
17.3.1
17.4
17.5
17.6
17.6.1
17.6.2
17.7
17.8
17.9

18

18.1
18.2
18.3

Continuous Transfers
PortControl
Baud Rate Generation
Error Detection Mechanisms
SSC Interrupt Control

Watchdog Timer (WDT)
Operation of the Watchdog Timer
Reset Source Indication

Real TimeClock

Bootstrap Loader

Entering the Bootstrap Loader
Loading the Startup Code
Exiting Bootstrap Loader Mode
Choosing the Baudrate for the BSL

Capture/Compare Unit CAPCOM2

CAPCOM2 Timers

CAPCOMZ2 Unit Timer Interrupts
Capture/Compare Registers
CaptureMode
CompareModes
Capture/Compare Interrupts

Capture/Compare Unit CAPCOM6
Output Signal Level Control
Edge Aligned Mode
Center Aligned Mode
Timing Relationships
BurstMode
CaptureMode
Combined Multi-Channel Modes
Output Signals in Multi-Channel Mode
Block Commutation Mode
Trap Function
Register Descriptions
The CAPCOMS6 Interrupt Structure

Analog/Digital Converter
Mode Selection and Operation
Conversion Timing Control
A/D Converter Interrupt Control

User’s Manual

Page

V3.1, 2002-02

—

|nfine0n C164Cl/C164SI

technologios Derivatives
Table of Contents Page
19 On-Chip CANInterface 19-1
19.1 Functional Blocks of the CANModule 19-2
19.2 General Functional Description 19-7
19.2.1 CAN InterruptHandling i 19-9
19.2.2 Configuration of the Bit Timing 19-11
19.2.3 Mask Registers 19-15
19.3 The Message Object i, 19-18
19.4 Controllingthe CANModule 19-30
19.5 Configuration Examples for Message Objects 19-34
19.6 CAN Application Interface 19-36
20 SystemReset 20-1
20.1 Reset Sources i 20-2
20.2 Status AfterReset 20-5
20.3 Application-Specific Initialization Routine 20-9
20.4 System Startup Configuration 20-12
20.41 System Startup Configuration upon an External Reset 20-13
20.4.2 System Startup Configuration at Single-Chip Mode Reset 20-20
20.5 System Configuration via Software 20-22
21 Power Management 21-1
211 Idle Mode 21-3
21.2 Sleep Mode e 21-5
21.3 Power Down Mode 21-6
21.3.1 Output Pins Status During Power Reduction Modes 21-8
21.4 Slow Down Operation i 21-10
21.5 Flexible Peripheral Management 21-14
21.6 Programmable Frequency Output Signal 21-16
21.7 Security Mechanism i 21-21
22 System Programming 22-1
221 Stack Operations e 22-4
22.2 Register Banking 22-9
22.3 Procedure Call Entryand Exit 22-9
22.4 Table Searching 22-12
22.5 Floating Point Support 22-12
22.6 Peripheral Control and Interface 22-13
22.7 Trap/Interrupt Entry and Exit, 22-13
22.8 Inseparable Instruction Sequences, 22-14
22.9 Overriding the DPP Addressing Mechanism 22-14
22.10 Handling the Internal Code Memory 22-16
22.11 Pits, Traps,and Mines i 22-18
23 Register Set 23-1

User’'s Manual I-4 V3.1, 2002-02

—

Infineon C164Cl/C164SI

rechno|ogies/ Derivatives
Table of Contents Page
23.1 Register Description Format L. 23-1
23.2 CPU General Purpose Registers (GPRs) 23-2
23.3 Registers Orderedby Name i, 23-4
23.4 Registers Ordered by Address, 23-11
23.5 Special Notes 23-18
24 Instruction SetSummary L 24-1
25 Device Specification 25-1
26 KeywordIndex 26-1

User’s Manual I-5 V3.1, 2002-02

—

Infineon C164C1/C164SI
echnologies Derivatives
Introduction

1 Introduction

The rapidly growing area of embedded control applications is representing one of the
most time-critical operating environments for today’s microcontrollers. Complex control
algorithms have to be processed based on a large number of digital as well as analog
input signals, and the appropriate output signals must be generated within a defined
maximum response time. Embedded control applications also are often sensitive to
board space, power consumption, and overall system cost.

Embedded control applications therefore require microcontrollers, which:

» offer a high level of system integration

¢ eliminate the need for additional peripheral devices and the associated software
overhead

e provide system security and fail-safe mechanisms

* provide effective means to control (and reduce) the device’s power consumption

The increasing complexity of embedded control applications requires microcontrollers
for new high-end embedded control systems to possess a significant increase in CPU
performance and peripheral functionality over conventional 8-bit controllers. To achieve
this high performance goal Infineon has decided to develop its family of 16-bit CMOS
microcontrollers without the constraints of backward compatibility.

Nonetheless the architecture of the 16-bit microcontroller family pursues successful
hardware and software concepts, which have been established in Infineon’s popular
8-bit controller families.

User’'s Manual 1-1 V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1t<_s4S|
et~ erivatives

Introduction

About this Manual

This manual describes the functionality of a number of 16-bit microcontrollers of the
Infineon C166 Family, the C164 group.

These microcontrollers provide identical functionality to a large extent, but each device
type has specific unique features as indicated here.

The descriptions in this manual cover a superset of the provided features and refer to the
following derivatives:

C164CL-6R 48 KByte Program ROM, reduced CAPCOM®6, CAN module
C164SL-6R 48 KByte Program ROM, reduced CAPCOM®6

This manual is valid for these derivatives and describes all variations of the different
available temperature ranges and packages.

For simplicity, these various device types are referred to by the collective term C164CI
throughout this manual. The complete pro-electron conforming designations are listed in
the respective data sheets.

Some sections of this manual do not refer to all of the C164CI derivatives which are
currently available or planned (such as devices with different types of on-chip memory
or peripherals). These sections contain respective notes wherever possible.

e C164CI-8R 64 KByte Program ROM, full-function CAPCOM®6, CAN module
e C164SI-8R 64 KByte Program ROM, full-function CAPCOM6

* C164CL-8R 64 KByte Program ROM, reduced CAPCOM6, CAN module

* C164SL-8R 64 KByte Program ROM, reduced CAPCOM6

e C164CI-L No Program memory, full-function CAPCOM®6, CAN module

e C164CI-8E 64 KByte Program OTP, full-function CAPCOM®6, CAN module

User’'s Manual 1-2 V3.1, 2002-02

—

Infineon C164Cl/C164SI
rechno|ogies/ Derivatives
Introduction

1.1 Members of the 16-bit Microcontroller Family

The microcontrollers in the Infineon 16-bit family have been designed to meet the high
performance requirements of real-time embedded control applications. The architecture
of this family has been optimized for high instruction throughput and minimized response
time to external stimuli (interrupts). Intelligent peripheral subsystems have been
integrated to reduce the need for CPU intervention to a minimum extent. This also
minimizes the need for communication via the external bus interface. The high flexibility
of this architecture allows to serve the diverse and varying needs of different application
areas such as automotive, industrial control, or data communications.

The core of the 16-bit family has been developed with a modular family concept in mind.
All family members execute an efficient control-optimized instruction set (additional
instructions for members of the second generation). This allows easy and quick
implementation of new family members with different internal memory sizes and
technologies, different sets of on-chip peripherals, and/or different numbers of 10 pins.

The XBUS concept (internal representation of the external bus interface) provides a
straightforward path for building application-specific derivatives by integrating
application-specific peripheral modules with the standard on-chip peripherals.

As programs for embedded control applications become larger, high level languages are
favored by programmers, because high level language programs are easier to write, to
debug and to maintain. The C166 Family supports this starting with its ond generation.

The 80C166-type microcontrollers were the first generation of the 16-bit controller
family. These devices established the C166 architecture.

The C165-type and C167-type devices are members of the second generation of this
family. This second generation is even more powerful due to additional instructions for
HLL support, an increased address space, increased internal RAM, and highly efficient
management of various resources on the external bus.

Enhanced derivatives of this second generation provide more features such as
additional internal high-speed RAM, an integrated CAN-Module, an on-chip PLL, etc.

The design of more efficient systems may require the integration of application-specific
peripherals to boost system performance while minimizing the part count. These efforts
are supported by the XBUS, defined for the Infineon 16-bit microcontrollers (second
generation). The XBUS is an internal representation of the external bus interface which
opens and simplifies the integration of peripherals by standardizing the required
interface. One representative taking advantage of this technology is the integrated CAN
module.

The C165-type devices are reduced functionality versions of the C167 because they do
not have the A/D converter, the CAPCOM units, and the PWM module. This results in a
smaller package, reduced power consumption, and design savings.

User’s Manual 1-3 V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1t<_s4S|
et~ erivatives

Introduction

The C164-type devices, the C167CS derivatives, and some of the C161-type devices
are further enhanced by a flexible power management and form the third generation of
the 16-bit controller family. This power management mechanism provides an effective
means to control the power that is consumed in a certain state of the controller and thus
minimizes the overall power consumption for a given application.

A variety of different versions is provided which offer various kinds of on-chip program
memory:

e Mask-programmable ROM

* Flash memory

* OTP memory

* ROMless without non-volatile memory.

Also there are devices with specific functional units.

The devices may be offered in different packages, temperature ranges and speed
classes.

Additional standard and application-specific derivatives are planned and are in
development.

Note: Not all derivatives will be offered in all temperature ranges, speed classes,
packages, or program memory variations.

Information about specific versions and derivatives will be made available with the
devices themselves. Contact your Infineon representative for up-to-date material.

Note: As the architecture and the basic features, such as the CPU core and built-in
peripherals, are identical for most of the currently offered versions of the C164Cl,
descriptions within this manual that refer to the “C164ClI” also apply to the other
variations, unless otherwise noted.

User’'s Manual 1-4 V3.1, 2002-02

—

|mtine0n C164Cl/C164SI
rechno|ogies/ Derivatives
Introduction

1.2 Summary of Basic Features

The C164CI devices are enhanced members of the Infineon family of full featured 16-bit
single-chip CMOS microcontrollers. The C164CI combines high CPU performance (up
to 12.5 million instructions per second) with high peripheral functionality and provides a
means for power reduction.

Several key features contribute to the high performance of the C164ClI (the indicated
timings refer to a CPU clock of 25 MHz).

High Performance 16-bit CPU with Four-Stage Pipeline

¢ 80 ns minimum instruction cycle time, with most instructions executed in 1 cycle

e 400 ns multiplication (16-bit x 16-bit), 800 ns division (32-bit / 16-bit)

* Multiple high bandwidth internal data buses

* Register-based design with multiple, variable register banks

» Single-cycle context switching support

* 16 MBytes of linear address space for code and data (Von Neumann architecture)
* System stack cache support with automatic stack overflow/underflow detection

Control Oriented Instruction Set with High Efficiency

¢ Bit, byte, and word data types

* Flexible and efficient addressing modes for high code density

* Enhanced boolean bit manipulation with direct addressability of 6 Kbits
for peripheral control and user-defined flags

* Hardware traps to identify exception conditions during runtime

* HLL support for semaphore operations and efficient data access

Power Management Features

Programmable system slowdown via Slow Down Divider (SDD)
Flexible management of peripherals, can be individually disabled
Sleep-mode supports wake-up via external interrupts
Programmable frequency output

Integrated On-Chip Memory

* 2 KBytes Internal RAM (IRAM) for variables, register banks, system stack, and code

* 2 KBytes on-chip high-speed extension RAM (XRAM) for variables, user stacks, and
code

* 64 KBytes on-chip Program memory (OTP or Mask ROM, not for ROMless devices)

User’s Manual 1-5 V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1t<_s4S|
et~ erivatives

Introduction

External Bus Interface

Multiplexed or demultiplexed bus configurations

Segmentation capability and chip select signal generation

8-bit or 16-bit data bus

Bus cycle characteristics selectable for five programmable address areas

16-Priority-Level Interrupt System

* 32 interrupt nodes with separate interrupt vectors

e 240 ns typical interrupt latency (400 ns maximum)
in case of internal program execution

¢ Fast external interrupts

8-Channel Peripheral Event Controller (PEC)

* Interrupt driven single cycle data transfer
* Transfer count option
(standard CPU interrupt after programmable number of PEC transfers)
* Overhead from saving and restoring system state for interrupt requests eliminated

Intelligent On-Chip Peripheral Subsystems

* 8-channel 10-bit A/D Converter with programmable conversion time
(7.8 us minimum), auto scan modes, channel injection mode

* Two Capture/Compare Units with independent time bases,
very flexible PWM unit/event recording unit with different operating modes

e Multifunctional General Purpose Timer Unit with three 16-bit timers/counters,
maximum resolution fcp,/8

e Asynchronous/Synchronous Serial Channel (USART)
with baud rate generator, parity, framing, and overrun error detection

* High Speed Synchronous Serial Channel
programmable data length and shift direction

* Controller Area Network (CAN) Module, Rev. 2.0B active, with 15 Message Objects,
Full-CAN/Basic-CAN

* Real Time Clock

* Watchdog Timer with programmable time intervals

* Bootstrap Loader for flexible system initialization

59 10 Lines with Individual Bit Addressability

Tri-stated in input mode

Selectable input thresholds (not on all pins)
Push/pull or open drain output mode
Programmable port driver control

User’s Manual 1-6 V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1t<_s4S|
et~ erivatives

Introduction

Various Temperature Ranges

* 0to+70°C
* -40to +85 °C
* -40to +125°C

Infineon CMOS Process

* Low power CMOS technology enables power saving ldle, Sleep, and Power Down
modes with flexible power management.

80-Pin Plastic Metric Quad Flat Pack (MQFP) Package

* P-MQFP, 14 x 14 mm body, 0.65 mm (25.6 mil) lead spacing,
surface mount technology

Complete Development Support

For the development tool support of its microcontrollers, Infineon follows a clear third
party concept. Currently around 120 tool suppliers world-wide, ranging from local niche
manufacturers to multinational companies with broad product portfolios, offer powerful
development tools for the Infineon C500 and C166 microcontroller families,
guaranteeing a remarkable variety of price-performance classes as well as early
availability of high quality key tools such as compilers, assemblers, simulators,
debuggers or in-circuit emulators.

Infineon incorporates its strategic tool partners very early into the product development
process, making sure embedded system developers get reliable, well-tuned tool
solutions, which help them unleash the power of Infineon microcontrollers in the most
effective way and with the shortest possible learning curve.

The tool environment for the Infineon 16-bit microcontrollers includes the following tools:

e Compilers (C, MODULA2, FORTH)

Macro-assemblers, linkers, locators, library managers, format-converters
Architectural simulators

HLL debuggers

Real-time operating systems

VHDL chip models

In-circuit emulators (based on bondout or standard chips)

Plug-in emulators

Emulation and clip-over adapters, production sockets

Logic analyzer disassemblers

Starter kits

Evaluation boards with monitor programs

Industrial boards (also for CAN, FUZZY, PROFIBUS, FORTH applications)
e Network driver software (CAN, PROFIBUS)

User’'s Manual 1-7 V3.1, 2002-02

—

Infineon C164CIl/C164SI
technologios Derivatives
Introduction

1.3 Abbreviations

The following acronyms and terms are used within this document:

ADC Analog Digital Converter

ALE Address Latch Enable

ALU Arithmetic and Logic Unit

ASC Asynchronous/synchronous Serial Controller

CAN Controller Area Network (License Bosch)

CAPCOM CAPture and COMpare unit

CISC Complex Instruction Set Computing

CMOS Complementary Metal Oxide Silicon

CPU Central Processing Unit

EBC External Bus Controller

ESFR Extended Special Function Register

Flash Non-volatile memory that may be electrically erased
GPR General Purpose Register

GPT General Purpose Timer unit

HLL High Level Language

lIC Inter Integrated Circuit (Bus)

10 Input/Output

OoTP One-Time Programmable memory

PEC Peripheral Event Controller

PLA Programmable Logic Array

PLL Phase Locked Loop

PWM Pulse Width Modulation

RAM Random Access Memory

RISC Reduced Instruction Set Computing

ROM Read Only Memory

RTC Real Time Clock

SDD Slow Down Divider

SFR Special Function Register

SSC Synchronous Serial Controller

XBUS Internal representation of the External Bus

XRAM On-chip extension RAM

User’s Manual 1-8 V3.1, 2002-02

—

!nfiqeon c1eSC|_/c1t<_a4S|
et~ erivatives

Architectural Overview

2 Architectural Overview

The architecture of the C164CI core combines the advantages of both RISC and CISC
processors in a very well-balanced way. The C164Cl integrates this powerful CPU core
with a set of powerful peripheral units into one chip and connects them very efficiently.
This combination of features results in a high performance microcontroller, which is the
right choice not only for today’s applications, but also for future engineering challenges.
One of the four buses used concurrently on the C164ClI is the XBUS, an internal
representation of the external bus interface. This bus provides a standardized method

for integrating additional application-specific peripherals into derivatives of the standard
C164Cl.

ProgMem C166-Core | __w.|y 'RAM
) 30 \ I = Internal
R(O)I_l{lp4gl464 Instr. / Data CPU Data 1 § RAM
: 110
KByte iE | ‘ 2 KByte
16 »
XRAM > / Osc/PLL YTAL
<:_' I ("~ PEC 1 —
2 KByte External Instr. / Data il
|Interrupt Controlla; ?Iérgil\tlg RTC| |WDT
16

L _ _ T _ Interrupt Bus - ﬁ T
J § 16 ‘ T T T Peripheral Dla Bus
CAN |, ! V!
< Rev 2.0B active \—§ ADC | ASCO | SSC | GPT1 CCOM2|CCOM6
10-Bit | (USART) | (SPI)
EBC Channels
3 IN XBUS Control | ke
v 13 External Bus - £)
Control BRGen | BRGen VA | VA B
\ | \ | \ |
Port 0 | Port 5 | Port 3 | Port 8

S 1] ¢

s
MCB04323_4ci

Figure 2-1 C164Cl Functional Block Diagram

User’'s Manual 2-1 V3.1, 2002-02

—

Infineon C164CIl/C164SI
rechno|ogies/ Derivatives
Architectural Overview

2.1 Basic CPU Concepts and Optimizations

The main core of the CPU consists of a four-stage instruction pipeline, a 16-bit Arithmetic
and Logic Unit (ALU) and dedicated Special Function Registers (SFRs). Additional
hardware is provided for a separate multiply and divide unit, a bit-mask generator, and
a barrel shifter.

BUSCON 2 ADDRSEL 2
BUSCON 3 ADDRSEL 3
BUSCON 4 ADDRSEL 4

r CPU
: : 16
: : K Z Internal
SP MDH — — RAM
| |
! ! 2ThOY o ']\
I I STKUN ‘ \
: : Exec.Unit Mul/Div—HW ‘ N 7 \ T
| I Instr.Ptr. Bit—Mask Gen] ' General — % =T
Instr.Reg. " 7] - —
: : 32 ;ALU; ‘_ Purpose \] A\ = I
K :‘—j > 4-Stage 16-bit)| | . = 3
: ROV I Pipeline () ‘ " Registers =
I Barrel=Shifter ‘ B _ A / — =
| - . =
PSW ™ . \/ RO
: SYSCON [Context Pir.| | : - // L
|
I BUSCON 0 ‘ = "
|
|
|
|
|
|
|

|
!
!
|
!
|
, BUSCON 1 | ApbRSEL J|I—=—1/
|
|
!
|
!
|

FData Page Ptr.4 Code Seg. Ptr.

MCB02147

Figure 2-2 CPU Block Diagram

To meet the demand for greater performance and flexibility, a number of functional
blocks of the CPU have been optimized. These blocks are controlled by signals from the
instruction decode logic. Optimizations of the functional blocks are summarized below
and described in detail in the following sections:

1. High Instruction Bandwidth / Fast Execution

2. High Function 8-bit and 16-bit Arithmetic and Logic Unit
3. Extended Bit Processing and Peripheral Control

4. High Performance Branch-, Call-, and Loop Processing
5. Consistent and Optimized Instruction Formats

6. Programmable Multiple Priority Interrupt Structure

User’'s Manual 2-2 V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1t<_s4S|
et~ erivatives

Architectural Overview

2.1.1 High Instruction Bandwidth / Fast Execution

Based on the hardware provisions, most of the C164CI’s instructions can be executed
in just one machine cycle, which requires two CPU clock cycles (2 x 1/fop, =4 TCL). For
example, shift and rotate instructions are always processed within one machine cycle,
independent of the number of bits to be shifted.

Branch-, multiply- and divide instructions normally take more than one machine cycle.
These instructions, however, have also been optimized. For example, branch
instructions require an additional machine cycle only when a branch is taken.
Subsequent branches taken in loops require no additional machine cycles at all, due to
the Jump Cache feature.

A 32-bit / 16-bit division requires 20 CPU clock cycles, a 16-bit x 16-bit multiplication
requires 10 CPU clock cycles.

The instruction cycle time has been dramatically reduced through the use of instruction
pipelining. This technique allows the core CPU to process portions of multiple sequential
instruction stages in parallel. The following four-stage pipeline provides the optimum
balancing for the CPU core:

FETCH: In this stage, an instruction is fetched from the internal ROM or RAM or from
the external memory, based on the current IP value.

DECODE: In this stage, the previously fetched instruction is decoded and the required
operands are fetched.

EXECUTE: In this stage, the specified operation is performed on the previously fetched
operands.

WRITE BACK: In this stage, the result is written to the specified location.

If this technique were not used, each instruction would require four machine cycles. This
increased performance allows a greater number of tasks and interrupts to be processed.

Instruction Decoder

Instruction decoding is generated primarily from Programmable Logic Array (PLA)
outputs based on the selected opcode. No microcode is used and each pipeline stage
receives control signals staged in control registers from the decode stage PLAs. Pipeline
holds are primarily caused by wait states for external memory accesses and cause the
holding of signals in the control registers. Multiple-cycle instructions are performed
through instruction injection and simple internal state machines which modify required
control signals.

User’s Manual 2-3 V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1t<_s4S|
et~ erivatives

Architectural Overview

High Function 8-bit and 16-bit Arithmetic and Logic Unit

All standard arithmetic and logical operations are performed in a 16-bit ALU.
Additionally, for byte operations, signals are provided from bits 6 and 7 of the ALU result
to set the condition flags correctly. Multiple precision arithmetic is provided through a
‘CARRY-IN’ signal to the ALU from previously calculated portions of the desired
operation.

Most internal execution blocks have been optimized to perform operations on either 8-bit
or 16-bit quantities. Once the pipeline has been filled, one instruction is completed per
machine cycle, except for multiply and divide. An advanced Booth algorithm has been
incorporated to allow four bits to be multiplied and two bits to be divided per machine
cycle. Thus, these operations use two coupled 16-bit registers, MDL and MDH, and
require four and nine machine cycles, respectively, to perform a 16-bit by 16-bit (or 32-bit
by 16-bit) calculation plus one machine cycle to setup and adjust the operands and the
result. Even these longer multiply and divide instructions can be interrupted during their
execution to allow for very fast interrupt response. Instructions have been provided as
well to allow byte packing in memory while providing sign extension of bytes for word
wide arithmetic operations. The internal bus structure also allows transfers of bytes or
words to or from peripherals based on the peripheral requirements.

A set of consistent flags is updated automatically in the PSW after each arithmetic,
logical, shift, or movement operation. These flags allow branching on specific conditions.
Support for both signed and unsigned arithmetic is provided through user-specifiable
branch tests. These flags are also preserved automatically by the CPU upon entry into
an interrupt or trap routine.

All targets for branch calculations are also computed in the central ALU.

A 16-bit barrel shifter provides multiple bit shifts in a single cycle. Rotates and arithmetic
shifts are also supported.

Extended Bit Processing and Peripheral Control

A large number of instructions has been dedicated to bit processing. These instructions
provide efficient control and testing of peripherals while enhancing data manipulation.
Unlike other microcontrollers, these instructions provide direct access to two operands
in the bit-addressable space without requiring them to be moved into temporary flags.

The same logical instructions available for words and bytes are also supported for bits.
This allows the user to compare and modify a control bit for a peripheral in one
instruction. Multiple bit shift instructions have been included to avoid long instruction
streams of single bit shift operations. These instructions are also performed in a single
machine cycle.

Bit field instructions have been provided as well to allow the modification of multiple bits
from one operand in a single instruction.

User’'s Manual 2-4 V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1t<_s4S|
et~ erivatives

Architectural Overview

High Performance Branch-, Call-, and Loop Processing

Due to the high percentage of branching in controller applications, branch instructions
have been optimized to require one extra machine cycle only when a branch is taken.
This is implemented by precalculating the target address while decoding the instruction.
To decrease loop execution overhead, three enhancements have been provided:

* Single cycle branch execution after the first iteration of a loop:
The first solution provides that only one machine cycle is lost during the execution of
the entire loop. In loops which fall through upon completion, no machine cycles are
lost when exiting the loop. No special instructions are required to perform loops, and
loops are automatically detected during execution of branch instructions.

* Detection of the end of a table:
The second loop enhancement avoids the use of two compare instructions embedded
in loops. One simply places the lowest negative number at the end of the specific table
and specifies branching if neither its value nor the compared value have been found.
Otherwise, the loop is terminated if either condition has been met. The terminating
condition can then be tested.

e Compare and Increment or Decrement instructions:
The third loop enhancement provides a more flexible solution than the Decrement and
Skip on Zero instruction found in other microcontrollers. The use of Compare and
Increment or Decrement instructions enables the user to make comparisons to any
value. This allows loop counters to cover any range and is particularly advantageous
in table searching.

The system state information is saved automatically on the internal system stack, thus
avoiding the use of instructions to preserve state upon entry and exit of interrupt or trap
routines. Call instructions push the value of the IP on the system stack, and require the
same execution time as branch instructions. Additionally, instructions have been
provided to support indirect branch and call instructions. This feature supports
implementation of multiple CASE statement branching in assembler macros and high
level languages.

User’s Manual 2-5 V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1t<_s4S|
et~ erivatives

Architectural Overview

Consistent and Optimized Instruction Formats

To obtain optimum performance in a pipelined design, an instruction set has been
designed which incorporates concepts from Reduced Instruction Set Computing (RISC).
These concepts primarily allow fast decoding of the instructions and operands while
reducing pipeline holds. These concepts, however, do not preclude the use of complex
instructions required by microcontroller users. The instruction set was designed to meet
the following goals:

* Provide powerful instructions for frequently-performed operations which traditionally
have required sequences of instructions. Avoid transfer into and out of temporary
registers such as accumulators and carry bits. Perform tasks in parallel such as
saving state upon entry into interrupt routines or subroutines.

* Avoid complex encoding schemes by placing operands in consistent fields for each
instruction and avoid complex addressing modes which are not frequently used.
Consequently, the instruction decode time decreases and the development of
compilers and assemblers is simplified.

* Provide most frequently used instructions with one-word instruction formats. All other
instructions use two-word formats. This allows all instructions to be placed on word
boundaries: this alleviates the need for complex alignment hardware. It also has the
benefit of increasing the range for relative branching instructions.

The high performance of the CPU-hardware can be utilized efficiently by a programmer
by means of the highly functional C164ClI instruction set which includes the following
instruction classes:

¢ Arithmetic Instructions

¢ Logical Instructions

¢ Boolean Bit Manipulation Instructions
e Compare and Loop Control Instructions
e Shift and Rotate Instructions

¢ Prioritize Instruction

¢ Data Movement Instructions

* System Stack Instructions

e Jump and Call Instructions

* Return Instructions

e System Control Instructions

¢ Miscellaneous Instructions

Possible operand types are bits, bytes and words. Specific instructions support the
conversion (extension) of bytes to words. Various direct, indirect, and immediate
addressing modes are provided to specify the required operands.

User’s Manual 2-6 V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1t<_s4S|
et~ erivatives

Architectural Overview

2.1.2 Programmable Multiple Priority Interrupt System

The following enhancements within the C164CI allow processing of a large number of
interrupt sources:

e Peripheral Event Controller (PEC): This processor is used to off-load many interrupt
requests from the CPU. It avoids the overhead of entering and exiting interrupt or trap
routines by performing single-cycle interrupt-driven byte or word data transfers
between any two locations in segment 0 with an optional increment of either the PEC
source or the destination pointer. Only one cycle is ‘stolen’ from the current CPU
activity to perform a PEC service.

e Multiple Priority Interrupt Controller: This controller allows all interrupts to be assigned
any specified priority. Interrupts may also be grouped, which enables the user to
prevent similar priority tasks from interrupting each other. For each of the possible
interrupt sources, there is a separate control register which contains an interrupt
request flag, an interrupt enable flag, and an interrupt priority bitfield. After being
accepted by the CPU, an interrupt service can be interrupted only by a higher
prioritized service request. For standard interrupt processing, each of the possible
interrupt sources has a dedicated vector location.

e Multiple Register Banks: This feature allows the user to specify up to sixteen general
purpose registers located anywhere in the internal RAM. A single one-machine-cycle
instruction allows register banks to switch from one task to another.

* |nterruptible Multiple Cycle Instructions: Reduced interrupt latency is provided by
allowing multiple-cycle instructions (multiply, divide) to be interruptible.

The C164Cl is capable of reacting very quickly to non-deterministic events because its
interrupt response time is within a very narrow range of only 5 to 10 CPU clock cycles
(in the case of internal program execution). Its fast external interrupt inputs are sampled
every CPU clock cycle and allow even very short external signals to be recognized.

The C164Cl also provides an excellent mechanism to identify and process exceptions
or error conditions that arise during run-time, so called ‘Hardware Traps’. A hardware
trap causes an immediate non-maskable system reaction which is similar to a standard
interrupt service (branching to a dedicated vector table location). The occurrence of a
hardware trap is additionally signified by an individual bit in the trap flag register (TFR).
Unless another, higher prioritized, trap service is in progress, a hardware trap will
interrupt any current program execution. In turn, a hardware trap service can normally
not be interrupted by a standard or PEC interrupt.

Software interrupts are supported by means of the “‘TRAP’ instruction in combination with
an individual trap (interrupt) number.

User’'s Manual 2-7 V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1t<_s4S|
et~ erivatives

Architectural Overview

2.2 On-Chip System Resources

The C164CI controllers provide a number of powerful system resources designed
around the CPU. The combination of CPU and these resources results in the high
performance of the members of this controller family.

Peripheral Event Controller (PEC) and Interrupt Control

The Peripheral Event Controller enables response to an interrupt request with a single
data transfer (word or byte) which consumes only one instruction cycle and does not
require saving and restoring the machine status. Each interrupt source is prioritized for
every machine cycle in the interrupt control block. If PEC service is selected, a PEC
transfer is started. If CPU interrupt service is requested, the current CPU priority level
stored in the PSW register is tested to determine whether a higher priority interrupt is
currently being serviced. When an interrupt is acknowledged, the current state of the
machine is saved on the internal system stack and the CPU branches to the system
specific vector for the peripheral.

The PEC contains a set of SFRs which store the count value and control bits for eight
data transfer channels. In addition, the PEC uses a dedicated area of RAM which
contains the source and destination addresses. The PEC is controlled in a manner
similar to any other peripheral: through SFRs containing the desired configuration of
each channel.

An individual PEC transfer counter is implicitly decremented for each PEC service
except in the continuous transfer mode. When this counter reaches zero, a standard
interrupt is performed to the vector location related to the corresponding source. PEC
services are very well suited, for example, to moving register contents to/from a memory
table. The C164CI has eight PEC channels, each of which offers such fast interrupt-
driven data transfer capabilities.

Memory Areas

The memory space of the C164Cl is configured in a Von Neumann architecture. This
means that code memory, data memory, registers, and 10 ports are organized within the
same linear address space which covers up to 16 MBytes. The entire memory space can
be accessed bytewise or wordwise. Particular portions of the on-chip memory have been
made directly bit addressable as well.

2 KBytes of 16-bit wide Internal RAM provide fast access to General Purpose
Registers (GPRs), user data (variables), and system stack. The internal RAM may also
be used for code. A unique decoding scheme provides flexible user register banks in the
internal memory while optimizing the remaining RAM for user data.

The CPU has an actual register context of up to 16 wordwide and/or bytewide GPRs at
its disposal, which are physically located within the on-chip RAM area. A Context Pointer
(CP) register determines the base address of the active register bank to be accessed by

User’s Manual 2-8 V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1t<_s4S|
et~ erivatives

Architectural Overview

the CPU at a time. The number of register banks is restricted only by the available
internal RAM space. For easy parameter passing, a register bank may overlap other
register banks.

A system stack of up to 1024 words is provided as storage for temporary data. The
system stack is also located within the on-chip RAM area and it is accessed by the CPU
via the Stack Pointer (SP) register. Two separate SFRs, STKOV and STKUN, are
implicitly compared against the stack pointer value upon each stack access for the
detection of a stack overflow or underflow.

Hardware detection of the selected memory space is placed at the internal memory
decoders and allows the user to specify any address directly or indirectly and obtain the
desired data without using temporary registers or special instructions.

2 KBytes of 16-bit wide on-chip XRAM provide fast access to user data (variables),
user stacks, and code. The on-chip XRAM is implemented as an X-Peripheral and
appears to the software as an external RAM. Therefore, it cannot store register banks
and is not bitaddressable. The XRAM allows 16-bit accesses with maximum speed.

For Special Function Registers 1024 Bytes of the address space are reserved. The
standard Special Function Register area (SFR) uses 512 bytes, while the Extended
Special Function Register area (ESFR) uses the other 512 bytes. (E)SFRs are wordwide
registers which are used for controlling and monitoring functions of the different on-chip
units. Unused (E)SFR addresses are reserved for future members of the C166
microcontroller family with enhanced functionality.

Optional on-chip OTP or ROM memory provides both code and constant data storage.
This memory area is connected to the CPU via a 32-bit-wide bus. Thus, an entire double-
word instruction can be fetched in only one machine cycle. The ROM is mask
programmed at the factory while the OTP memory can also be programmed within the
application. Program execution from on-chip program memory is the fastest of all
possible alternatives.

The type of the on-chip program memory (OTP/ROM/none) depends on the chosen
derivative.

User’s Manual 2-9 V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1t<_s4S|
et~ erivatives

Architectural Overview

External Bus Interface

To meet the needs of designs where more memory is required than is provided on chip,
up to 4 MBytes of external RAM and/or ROM can be connected to the C164CI
microcontroller via its external bus interface. The integrated External Bus Controller
(EBC) allows very flexible access to external memory and/or peripheral resources. For
up to five address areas the bus mode (multiplexed / demultiplexed), the data bus width
(8-bit/16-bit) and even the length of a bus cycle (waitstates, signal delays) can be
selected independently. This allows access to a variety of memory and peripheral
components directly and with maximum efficiency. If the device does not run in Single
Chip Mode, where no external memory is required, the EBC can control external
accesses in one of the following external access modes:

16-/18-/20-/22-bit Addresses, 16-bit Data, Demultiplexed
16-/18-/20-/22-bit Addresses, 8-bit Data, Demultiplexed
16-/18-/20-/22-bit Addresses, 16-bit Data, Multiplexed
16-/18-/20-/22-bit Addresses, 8-bit Data, Multiplexed

The demultiplexed bus modes use PORT1 for addresses and PORTO for data input/
output. The multiplexed bus modes use PORTO for both addresses and data input/
output. Port 4 is used for the upper address lines (A16 ..., if selected) and for the CS
lines (CSO ..., if selected).

Important timing characteristics of the external bus interface (waitstates, ALE length, and
Read/Write Delay) have been made programmable to allow the user select a wide range
of different types of memories and/or peripherals.

For applications which require less than 64 KBytes of address space, a non-segmented
memory model can be selected, where all locations can be addressed by 16 bits. Thus,
Port 4 is not needed as an output for the upper address bits (Axx ... A16), as is the case
when using the segmented memory model.

The on-chip XBUS is an internal representation of the external bus. It allows access to
integrated application-specific peripherals/modules in the same way as external
components. It provides a defined interface for these customized peripherals. Both the
on-chip XRAM and the on-chip CAN-Module are examples for these X-Peripherals.

User’s Manual 2-10 V3.1, 2002-02

—

Infineon C164Cl/C164SI
rechno|ogies/ Derivatives
Architectural Overview

2.3 On-Chip Peripheral Blocks

The C166 Family clearly separates peripherals from the core. This structure permits the
maximum number of operations to be performed in parallel and allows peripherals to be
added or deleted from family members without modifications to the core. Each functional
block processes data independently and communicates information over common
buses. Peripherals are controlled by data written to the respective Special Function
Registers (SFRs). These SFRs are located within either the standard SFR area
(OO’FEOQ ... 00'FFFF,) or within the extended ESFR area (00’FO00 ... 00'F1FF).

These built-in peripherals either allow the CPU to interface with the external world or
provide functions on-chip that otherwise would need to be added externally in the
respective system.

The C164CI generic peripherals are:

* A General Purpose Timer Block (GPT1)

Two Serial Interfaces (ASCO and SSC)

A Watchdog Timer

Two Capture / Compare units (CAPCOM2 and CAPCOMBG)
A 10-bit Analog / Digital Converter

A Real Time Clock

Six I/0O ports with a total of 59 1/O lines

Each peripheral also contains a set of Special Function Registers (SFRs) which control
the functionality of the peripheral and temporarily store intermediate data results. Each
peripheral has an associated set of status flags. Individually selected clock signals are
generated for each peripheral from binary multiples of the CPU clock.

Peripheral Interfaces

The on-chip peripherals generally have two different types of interfaces: an interface to
the CPU and an interface to external hardware. Communication between the CPU and
peripherals is performed through Special Function Registers (SFRs) and interrupts. The
SFRs serve as control/status and data registers for the peripherals. Interrupt requests
are generated by the peripherals based on specific events which occur during their
operation, such as operation complete, error, etc.

To interface with external hardware, specific pins of the parallel ports are used, when an
input or output function has been selected for a peripheral. During this time, the port pins
are controlled either by the peripheral (when used as outputs) or by the external
hardware which controls the peripheral (when used as inputs). This is called the
‘alternate (input or output) function’ of a port pin, in contrast to its function as a general
purpose I/O pin.

User’'s Manual 2-11 V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1t<_s4S|
et~ erivatives

Architectural Overview

Peripheral Timing

Internal operation of the CPU and peripherals is based on the CPU clock (fop). The on-
chip oscillator derives the CPU clock from the crystal or from the external clock signal.
The clock signal gated to the peripherals is independent from the clock signal that feeds
the CPU. During Idle mode, the CPU’s clock is stopped while the peripherals continue
their operation. Peripheral SFRs may be accessed by the CPU once per state. When an
SFR is written to by software in the same state where it is also to be modified by the
peripheral, the software write operation has priority. Further details on peripheral timing
are included in the specific sections describing each peripheral.

Programming Hints

Access to SFRs
All SFRs reside in data page 3 of the memory space. The following addressing
mechanisms allow access to the SFRs:

* Indirect or direct addressing with 16-bit (mem) addresses must guarantee that the
used data page pointer (DPPO ... DPP3) selects data page 3.

* Accesses via the Peripheral Event Controller (PEC) use the SRCPx and DSTPx
pointers instead of the data page pointers.

e Short 8-bit (reg) addresses to the standard SFR area do not use the data page
pointers but directly access the registers within this 512-Byte area.

* Short 8-bit (reg) addresses to the extended ESFR area require switching to the
512-Byte Extended SFR area. This is done via the EXTension instructions EXTR,
EXTP(R), EXTS(R).

Byte write operations to wordwide SFRs via indirect or direct 16-bit (mem) addressing
or byte transfers via the PEC force zeros in the non-addressed byte. Byte write
operations via short 8-bit (reg) addressing can access only the low byte of an SFR and
force zeros in the high byte. It is therefore recommended, to use the bit field instructions
(BFLDL and BFLDH) to write to any number of bits in either byte of an SFR without
disturbing the non-addressed byte and the unselected bits.

Reserved Bits

Some of the bits which are contained in the C164CI's SFRs are marked as ‘Reserved’.
User software should never write ‘1’s to reserved bits. These bits are currently not
implemented and may be used in future products to invoke new functions. In that case,
the active state for those new functions will be ‘1’, and the inactive state will be ‘0’.
Therefore writing only ‘0’s to reserved locations allows portability of the current software
to future devices. After read accesses, reserved bits should be ignored or masked out.

User’'s Manual 2-12 V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1t<_s4S|
et~ erivatives

Architectural Overview

Serial Channels

Serial communication with other microcontrollers, processors, terminals, or external
peripheral components is provided by two serial interfaces with different functionality: an
Asynchronous/Synchronous Serial Channel (ASC0) and a High-Speed Synchronous
Serial Channel (SSC).

The ASCO is upward compatible with the serial ports of the Infineon 8-bit microcontroller
families and supports full-duplex asynchronous communication at up to 780 KBit/s and
half-duplex synchronous communication at up to 3.1 MBit/s @ 25 MHz CPU clock.

A dedicated baud rate generator allows all standard baud rates to be set up without
oscillator tuning. Four separate interrupt vectors are provided for transmission,
reception, and error handling. In asynchronous mode, 8- or 9-bit data frames are
transmitted or received, preceded by a start bit and terminated by one or two stop bits.
For multiprocessor communication, a mechanism has been included to distinguish
address bytes from data bytes (8-bit data plus wake-up bit mode). In synchronous mode,
the ASCO transmits or receives bytes (8 bits) synchronously to a shift clock which is
generated by the ASCO. The ASCO always shifts the Least Significant Bit (LSB) first. A
loop back option is available for testing purposes.

Optional hardware error detection capabilities have been included to increase the
reliability of data transfers. A parity bit can be generated automatically on transmission
or can be checked on reception. Framing error detection allows data frames with missing
stop bits to be recognized. An overrun error will be generated, if the last character
received has not been read out of the receive buffer register at the time that reception of
a new character is complete.

The SSC supports full-duplex synchronous communication at up to 6.25 Mbit/s @
25 MHz CPU clock. It may be configured so that it interfaces with serially linked
peripheral components. A dedicated baud rate generator allows set up of all standard
baud rates without oscillator tuning. Three separate interrupt vectors are provided for
transmission, reception, and error handling.

The SSC transmits or receives characters of 2 ... 16 bits length synchronously to a shift
clock which can be generated by the SSC (master mode) or by an external master (slave
mode). The SSC can start shifting with the LSB or with the Most Significant Bit (MSB)
and allows selection of shifting and latching clock edges as well as the clock polarity.

A number of optional hardware error detection capabilities has been included to increase
the reliability of data transfers. Transmit and receive error supervise the correct handling
of the data buffer. Phase and baudrate error detect incorrect serial data.

User’s Manual 2-13 V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1t<_s4S|
et~ erivatives

Architectural Overview

On-Chip CAN Module

The integrated CAN Module handles the completely autonomous transmission and
reception of CAN frames in accordance with the CAN specification V2.0 part B (active),
i.e. the on-chip CAN Module can receive and transmit standard frames with 11-bit
identifiers as well as extended frames with 29-bit identifiers.

The module provides Full CAN functionality on up to 15 message objects. Message
object 15 may be configured for Basic CAN functionality. Both modes provide separate
masks for acceptance filtering which allows acceptance of a number of identifiers in Full
CAN mode and also allows a number of identifiers in Basic CAN mode to be disregarded.
All message objects can be updated independently from the other objects and are
equipped for the maximum message length of 8 bytes.

The bit timing is derived from the CPU clock and is programmable up to a data rate of
1 Mbit/s. The CAN Module uses two pins (configurable) to interface to a bus transceiver.

Parallel Ports

The C164ClI provides up to 59 I/O lines which are organized into five input/output ports
and one input port. All port lines are bit-addressable, and all input/output lines are
individually programmable (bit-wise) as inputs or outputs via direction registers. The 1/0O
ports are true bidirectional ports which are switched to high impedance state when
configured as inputs. The output drivers of three 1/O ports can be configured (pin by pin)
for push/pull operation or open-drain operation via control registers. During the internal
reset, all port pins are configured as inputs.

All port lines have programmable alternate input or output functions associated with
them. PORTO and PORT1 may be used as address and data lines when accessing
external memory, while Port 4 outputs the additional segment address bits A21/19/17 ...
A16 in systems where segmentation is used to access more than 64 KBytes of memory.
Port 4 may also output the optional chip select signals CS3 ... CS0. PORT1 provides
input and output signals for the CAPCOM units. Port 3 includes alternate functions of
timers, serial interfaces, the optional bus control signal BHE, and the system clock
output (CLKOUT/FOUT). Port 5 is used for timer control signals and for the analog
inputs to the A/D Converter. Port 8 provides inputs/outputs for the CAPCOM2 unit. All
port lines not used for these alternate functions may be used as general purpose 1/O
lines.

User’'s Manual 2-14 V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1t<_s4S|
et~ erivatives

Architectural Overview

A/D Converter

For analog signal measurement, a 10-bit Analog/Digital (A/D) Converter with eight
multiplexed input channels and a sample and hold circuit has been integrated on-chip.
It uses the method of successive approximation. The sample time (for loading the
capacitors) and the conversion time are programmable and can so be adjusted to the
external circuitry.

Overrun error detection/protection is provided for the conversion result register
(ADDAT): either an interrupt request will be generated when the result of a previous
conversion has not been read from the result register at the time the next conversion is
complete, or the next conversion is suspended in such a case until the previous result
has been read.

For applications which require fewer analog input channels, the remaining channel
inputs can be used as digital input port pins.

The A/D Converter of the C164Cl supports four different conversion modes. In the
standard Single Channel conversion mode, the analog level on a specified channel is
sampled once and converted to a digital result. In the Single Channel Continuous mode,
the analog level on a specified channel is repeatedly sampled and converted without
software intervention. In the Auto Scan mode, the analog levels on a prespecified
number of channels are sequentially sampled and converted. In the Auto Scan
Continuous mode, the prespecified channels are repeatedly sampled and converted. In
addition, the conversion of a specific channel can be inserted (injected) into a running
sequence without disturbing this sequence. This is called Channel Injection Mode.

The Peripheral Event Controller (PEC) may be used to automatically store the
conversion results into a table in memory for later evaluation, without requiring the
overhead of entering and exiting interrupt routines for each data transfer.

Real Time Clock

The C164CI contains a Real Time Clock (RTC) which serves different purposes:

e System clock to determine the current time and date,
even during idle mode and power down mode (optionally).
e Cyclic time based interrupt
(for example: to provide a system time tick independent of the CPU frequency without
loading the general purpose timers, or to wake up regularly from idle mode).
* 48-bit timer for long term measurements
(the maximum usable timespan is more than 100 years).

The RTC module consists of a chain of three divider blocks, a fixed 8:1 divider, the
reloadable 16-bit timer T14, and the 32-bit RTC timer (accessible via registers RTCH
and RTCL). Both timers count upwards.

User’s Manual 2-15 V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1t<_s4S|
et~ erivatives

Architectural Overview

General Purpose Timer (GPT) Unit

The GPT1 unit utilizes a very flexible multifunctional timer/counter structure which may
be used for many different time related tasks such as event timing and counting, pulse
width and duty cycle measurements, pulse generation, or pulse multiplication.

Each timer may operate independently in a number of different modes, or may be
concatenated with another timer of the same module.

Each timer can be configured individually for one of four basic modes of operation:
Timer, Gated Timer, Counter Mode, and Incremental Interface Mode. In Timer Mode, the
input clock for a timer is derived from the internal CPU clock divided by a programmable
prescaler, while Counter Mode allows a timer to be clocked in reference to external
events (via TxIN).

Pulse width or duty cycle measurement is supported in Gated Timer Mode where the
operation of a timer is controlled by the ‘gate’ level on its external input pin TxIN.

In Incremental Interface Mode, the GPT1 timers can be directly connected to the
incremental position sensor signals A and B via the respective inputs TxIN and TxEUD.
Direction and count signals are internally derived from these two input signals, so, the
contents of timer Tx corresponds to the sensor position. The third position sensor signal
TOPO can be connected to an interrupt input.

The count direction (up/down) for each timer is programmable by software or may
additionally be altered dynamically by an external signal (TXxEUD) to facilitate tasks such
as position tracking.

The core timer T3 has an output toggle latch (T3OTL) which changes its state on each
timer overflow/underflow. The state of this latch may be used internally to concatenate
the core timer with the respective auxiliary timers resulting in 32/33-bit timers/counters
for measuring long time periods with high resolution.

Various reload or capture functions can be selected to reload timers or capture a timer’s
contents triggered by an external signal or a selectable transition of toggle latch T3OTL.

The maximum resolution of the timers in module GPT1 is 8 CPU clock cycles (= 16 TCL).

User’s Manual 2-16 V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1t<_s4S|
et~ erivatives

Architectural Overview

Capture/Compare (CAPCOM) Units

The CAPCOM units are typically used to handle high speed I/O tasks such as pulse and
waveform generation, pulse width modulation (PWM), Digital to Analog (D/A)
conversion, software timing, or time recording relative to external events.

A number of dedicated timers with reload registers provide independent time bases for
the capture/compare channels. The input clock for the timers is programmable to several
prescaled values of the internal CPU clock, or may be derived from an overflow/
underflow of timer T3 in module GPT1 (for CAPCOM2 timers). This provides a wide
range of variation for the timer period and resolution and allows precise adjustments to
the application specific requirements. In addition, external inputs for the CAPCOM units
allow event scheduling for the capture/compare registers relative to external events.

The CAPCOM2 unit supports generation and control of timing sequences on up to 16
channels (8 I/0O pins) with a maximum resolution of 8 CPU clock cycles. The capture/
compare register array contains 16 dual purpose capture/compare registers, each of
which may be individually allocated to either CAPCOM2 timer T7 or T8, and
programmed for capture or compare function. Eight registers have port pins associated
with them: they serve as input pins for triggering the capture function, or as output pins
to indicate the occurrence of a compare event.

When a capture/compare register has been selected for capture mode, the current
contents of the allocated timer will be latched (captured) into the capture/compare
register in response to an external event at the port pin which is associated with this
register. In addition, a specific interrupt request for this capture/compare register is
generated. Either a positive, a negative, or both a positive and a negative external signal
transition at the pin can be selected as the triggering event. The contents of all registers
which have been selected for one of the five compare modes are continuously compared
with the contents of the allocated timers. When a match occurs between the timer value
and the value in a capture/compare register, specific actions will be taken based on the
selected compare mode.

The CAPCOMSG6 unit provides three capture/compare channels and one additional
compare channel. The three capture/compare channels can control two output lines
each, which can be programmed to generate non-overlapping pulse patterns. The
additional compare channel may either generate a separate output signal or modulate
the output signals of the three other channels. The active level for each output can be
selected individually.

Versatile multichannel PWM signals can be generated: controlled either internally via a
timer or externally, for example via hall sensors. The trap function allows the outputs to
be driven to a defined level in response to an external signal.

Note: Multichannel PWM modes are only available in devices with a full-function
CAPCOMSE, not in the reduced CAPCOMES.

User’'s Manual 2-17 V3.1, 2002-02

—

Infineon C164Cl/C164SI
rechno|ogies/ Derivatives
Architectural Overview

Watchdog Timer

The Watchdog Timer is one of the fail-safe mechanisms implemented in the C164ClI to
prevent the controller from malfunctioning for longer periods of time.

The Watchdog Timer is always enabled after a reset of the chip, and can be disabled
only for the time interval before the EINIT (end of initialization) instruction has been
executed. Thus, the chip’s start-up procedure is always monitored. The software must
be designed to service the Watchdog Timer before it overflows. If the software fails to do
so, due to either hardware or software related failures, the Watchdog Timer overflows
and generates an internal hardware reset and pulls the RSTOUT pin low to allow
external hardware components to reset.

The Watchdog Timer is a 16-bit timer, clocked with the CPU clock divided by 2, 4, 128, or
256. The high byte of the Watchdog Timer register can be set to a prespecified reload
value (stored in WDTREL) to allow further variation of the monitored time interval. Each
time it is serviced by the application software, the high byte of the Watchdog Timer is
reloaded. Thus, time intervals between 21 us and 671 ms can be monitored (@ 25 MHz).
The default Watchdog Timer interval after reset is 5.2 ms (@ 25 MHz).

24 Power Management Features

The basic power reduction modes (ldle and Power Down) are enhanced by additional

power management features (see below). These features can be combined to reduce

the controller’s power consumption to correspond to the application’s possible minimum.

* Flexible clock generation

* Flexible peripheral management (peripherals can be dis/enabled separately or in
groups)

* Periodic wakeup from Idle mode via RTC timer

The listed features provide effective means to realize standby conditions for the system

with an optimum balance between power reduction (standby time) and peripheral

operation (system functionality).

User’s Manual 2-18 V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1t<_s4S|
et~ erivatives

Architectural Overview

Flexible Clock Generation

The flexible clock generation system combines a variety of improved mechanisms (partly
user controllable) to provide the C164CI modules with clock signals. This is especially
important in power sensitive modes such as standby operation.

The power optimized oscillator generally reduces the amount of power which is
consumed in order to generate the clock signal within the C164CI.

The clock system efficiently controls the amount of power which is consumed in order
to distribute the clock signal within the C164Cl.

Slowdown operation is achieved by dividing the oscillator clock by a programmable
factor (1 ... 32) resulting in a low frequency device operation which significantly reduces
the overall power consumption.

Flexible Peripheral Management

Flexible peripheral management provides a mechanism to enable and disable each
peripheral module separately. In each situation (such as several system operating
modes, standby, etc.) only those peripherals may be kept running which are required for
the specified functionality. All others may be switched off. It also allows the operation
control of entire groups of peripherals including the power required for generating and
distributing their clock input signal. Other peripherals may remain active: for example, in
order to maintain communication channels. The registers of separately disabled
peripherals (not within a disabled group) can still be accessed.

Periodic Wakeup from Idle or Sleep Mode

Periodic wakeup from Idle mode or from Sleep mode combines the drastically reduced
power consumption in Idle/Sleep mode (in conjunction with the additional power
management features) with a high level of system availability. External signals and
events can be scanned (at a lower rate) by periodically activating the CPU and selected
peripherals which then return to powersave mode after a short time. This greatly reduces
the system’s average power consumption. ldle/Sleep mode can also be terminated by
external interrupt signals.

User’s Manual 2-19 V3.1, 2002-02

—

|nfine0n C164Cl/C164SI
rechno|ogies/ Derivatives
Architectural Overview

2.5 Protected Bits

The C164Cl provides a special mechanism to protect bits which can be modified by the
on-chip hardware from being changed unintentionally by software accesses to related
bits (see also Chapter 4).

The following bits are protected:

Table 2-1 C164CI Protected Bits

Register Bit Name Notes

T2IC, T3IC, T4IC | T2IR, T3IR, T4IR | GPT1 timer interrupt request flags

T3CON T30TL GPT1 timer output toggle latches

T71C, T8IC T7IR, T8IR CAPCOMZ2 timer interrupt request flags

SOTIC, SOTBIC SOTIR, SOTBIR ASCO transmit (buffer) interrupt request
flags

SORIC, SOEIC SORIR, SOEIR ASCO receive/error interrupt request flags

SOCON SOREN ASCO receiver enable flag

SSCTIC, SSCRIC |SSCTIR, SSCRIR | SSC transmit/receive interrupt request flags

SSCEIC SSCEIR SSC error interrupt request flag

SSCCON SSCBSY SSC busy flag

SSCCON SSCBE, SSCPE SSC error flags

SSCCON SSCRE, SSCTE SSC error flags

ADCIC, ADEIC ADCIR, ADEIR ADC end-of-conv./overrun intr. request flag

ADCON ADST, ADCRQ ADC start flag/injection request flag

CC31IC ... CC16IC | CC31IR ... CC16IR | Fast external interrupt request flags

TFR TFR.15, 14,13 Class A trap flags

TFR TFR.7,3,2,1,0 Class B trap flags

P1H P1H.7 ... P1H.A4 Those bits of PORT1 used for CAPCOM2

P8 P8.3 ... P8.0 All bits of Port 8 used for CAPCOM2

ISNC RTCIR Interrupt node sharing request flag

XPOIC, XP3IC XPOIR, XP3IR CAN and PLL/RTC interrupt request flags

X = 58 protected bits.

User’s Manual 2-20 V3.1, 2002-02

—

!nfiqeon c1eSC|_/c1te_s4S|
et~ erivatives

Memory Organization

3 Memory Organization

The memory space of the C164Cl is configured in a “Won Neumann” architecture. This
means that code and data are accessed within the same linear address space. All of the
physically separated memory areas, including internal ROM/Flash/OTP (where
integrated), internal RAM, the internal Special Function Register Areas (SFRs and
ESFRs), the address areas for integrated XBUS peripherals and external memory are
mapped into one common address space.

The C164CI provides a total addressable memory space of 16 MBytes. This address
space is arranged as 256 segments of 64 KBytes each, and each segment is again
subdivided into four data pages of 16 KBytes each (see Figure 3-1).

FF'FFFF |——————=- -
255 | |
I 255...2 I
254..129 [
O1'FFFF
128 /
80°0000 /
127 / .
/ Begin of
126...65 /[-Prog. Memory - —
/ above 32 KB
o 40’0000 :
tl / ~—
Y 63 H P
/8 01°8000
62...12 / o)
OAFFFF, / B
11 / Alternate
/ ——- ROM --—H
> 10 // Area
B ° / 01°0000
3 8 / H
22 08’0000 Data Page 3
£ |S 7 H
@ |3 !
=9 /
< © 6 /
o / © Data Page 2
< 5 / |5
g / £
o 4 / ()}
= / 3
LLI 3 /
02’FFFF|_| Internal
2 ' — —— ROM = — -
01’FFFFH Area
1
I 0 Og’(ﬁ)(io H 000000,
Total Address Space Segments 1 and 0
16 MByte, Segments 255...0 64 + 64 Kbyte
MCA05077

Figure 3-1 Address Space Overview

User’s Manual 3-1 V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1t<_s4S|
et~ erivatives

Memory Organization

Most internal memory areas are mapped into segment 0, the system segment. The
upper 4 KBytes of segment 0 (00’FO00y ... OO’FFFFy) hold the Internal RAM and
Special Function Register Areas (SFR and ESFR). The lower 32 KBytes of segment 0
(00’0000 ... 00’7FFFy) may be occupied by a portion of the on-chip ROM/Flash/OTP
memory and is called the Internal ROM area. This ROM area can be remapped to
segment 1 (01°0000y ... 01°7FFFR), to enable external memory access in the lower half
of segment 0, or the internal ROM may be disabled completely.

Code and data may be stored in any part of the internal memory areas, except for the
SFR blocks, which may be used for control/data, but not for instructions.

Note: Accesses to the internal ROM area on ROMless devices will produce
unpredictable results.

Bytes are stored at even or odd byte addresses. Words are stored in ascending memory
locations with the low byte at an even byte address followed by the high byte at the next
odd byte address. Double words (code only) are stored in ascending memory locations
as two subsequent words. Single bits are always stored in the specified bit position at a
word address. Bit position 0 is the least significant bit of the byte at an even byte address,
and bit position 15 is the most significant bit of the byte at the next odd byte address. Bit
addressing is supported for a portion of the Special Function Registers, a portion of the
internal RAM, and for the General Purpose Registers.

/\/
XXXX6 H
15 | 14 « e+ Bits - 8 | XXXx5H
7 6 « e« Bitg + ¢« 0 XXXX4|.|
Byte XXXX3 H
Byte XXXX2H
Word (High Byte) xxxx1H
Word (Low Byte) Xxxx0 4
XxxxF H
/\/
MCD01996

Figure 3-2 Storage of Words, Bytes, and Bits in a Byte Organized Memory

Note: Byte units forming a single word or a double word must always be stored within
the same physical (internal, external, ROM, RAM) and organizational (page,
segment) memory area.

User’s Manual 3-2 V3.1, 2002-02

—

|nfine0n C164Cl/C164SI
rechno|ogies/ Derivatives
Memory Organization

3.1 Internal ROM Area

The C164Cl may reserve an address area of variable size (depending on the version)
for on-chip mask-programmable ROM/Flash/OTP memory (organized as X x 32). The
lower 32 KBytes of this on-chip memory block are referred to as “Internal ROM Area”.
Internal ROM accesses are globally enabled or disabled via bit ROMEN in register
SYSCON. This bit is set during reset according to the level on pin EA, or may be altered
via software. If enabled, the internal ROM area occupies the lower 32 KBytes of either
segment 0 or segment 1 (alternate ROM area). This mapping is controlled by bit ROMS1
in register SYSCON.

Note: The size of the internal ROM area is independent of the actual size of the
implemented Program Memory. Also devices with less than 32 KBytes of Program
Memory or without any Program Memory will have this 32-KByte area occupied if
the Program Memory is enabled. Devices with a larger Program Memory provide
the mapping option only for the internal ROM area.

Devices with a Program Memory size above 32 KBytes expand the ROM area from the
middle of segment 1, starting at address 01°8000.

The internal Program Memory can be used for both code (instructions) and data
(constants, tables, etc.) storage.

Code fetches are always made on even byte addresses. The highest possible code
storage location in the internal Program Memory is either xxX’xxFEy for single word
instructions, or xxX’xxFCy for double word instructions. The respective location must
contain a branch instruction (unconditional), because sequential boundary crossing from
internal Program Memory to external memory is not supported and causes erroneous
results.

Any word and byte data read accesses may use the indirect or long 16-bit addressing
modes. There is no short addressing mode for internal ROM operands. Any word data
access is made to an even byte address. The highest possible word data storage
location in the internal Program Memory is xxX’xxFEp. For PEC data transfers the internal
Program Memory can be accessed independent of the contents of the DPP registers via
the PEC source and destination pointers.

The internal Program Memory is not provided for single bit storage, and therefore it is
not bit-addressable.

Note: The X’ in the locations above depend on the available Program Memory and on
the mapping.

The internal Program Memory may be enabled, disabled or mapped into segment 0 or
segment 1 under software control. Chapter 22 describes this and indicates precautions
which must be taken to prevent system crashes.

User’s Manual 3-3 V3.1, 2002-02

—

Infineon
ec no Ogy

C164Cl/C164SI
Derivatives

3.2

Internal RAM and SFR Area

Memory Organization

The IRAM/SFR area is located within data page 3 and provides access to the Internal

RAM (IRAM, organized as X x 16) and to two 512-Byte blocks of Special Function
Registers (SFRs).

The C164CI provides 2 KBytes of IRAM.

00'FFFF

00’FO00

IRAM/SFR
X-Peripherals
(ep]
%
< XRAM
o
©
©
m)
Reserved
(aV]
(0]
&
o Ext. Memory
©
©
o

OO’EOOOH

00'C000 H

0078000,

Note: New XBUS peripherals will be preferably placed into the reserved areas,
which now access external memory (bus cycles executed).

OO’FFFFH
SFR Area
IRAM
00’F600|_|
Reserved
00’F200|_|
ESFR Area
00’F000|_|
CANT1
00 EFOOH
Reserved
OO’E7FFH
XRAM
OO’EOOOH
MCA05076

Figure 3-3

User’s Manual

System Memory Map

3-4

V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1t<_s4S|
et~ erivatives

Memory Organization

Note: The upper 256 Bytes of the SFR area, the ESFR area, and the Internal RAM are
bit-addressable (see shaded blocks in Figure 3-3).

Code accesses are always made on even byte addresses. The highest possible code
storage location in the Internal RAM is either 00’FDFE for single word instructions or
00’FDFC4 for double word instructions. The respective location must contain a branch
instruction (unconditional), because sequential boundary crossing from Internal RAM to
the SFR area is not supported and causes erroneous results.

Any word and byte data in the Internal RAM can be accessed via indirect or long 16-bit
addressing modes, if the selected DPP register points to data page 3. Any word data
access is made on an even byte address. The highest possible word data storage
location in the internal RAM is 00'FDFEy. For PEC data transfers, the internal RAM can
be accessed independent of the contents of the DPP registers via the PEC source and
destination pointers.

The upper 256 Bytes of the Internal RAM (00'’FD00y through O0’FDFFy) and the GPRs
of the current bank are provided for single bit storage, and thus they are bit-addressable.

System Stack

The system stack may be defined within the Internal RAM. The size of the system stack
is controlled by bitfield STKSZ in register SYSCON (see Table 3-1).

Table 3-1 System Stack Size Encoding

<STKSZ> |Stack Size (words) | Internal RAM Addresses (words)

000g 256 O00’FBFEy ... 00'FAQOy (Default after Reset)
001p 128 00’FBFEy ... 00'FBOOy

010g 64 00’FBFEy ... 00’'FB80y

011p 32 00’FBFEY ... 00'FBCOy

100g 512 O00’FBFEy ... 00’F8004

101p - Reserved. Do not use this combination.

110g - Reserved. Do not use this combination.

111p 1024 O0’FDFEy ... 00'F600y (Note: No circular stack)

For all system stack operations the on-chip RAM is accessed via the Stack Pointer (SP)
register. The stack grows downward from higher towards lower RAM address locations.
Only word accesses are supported to the system stack. A stack overflow (STKOV)
register and a stack underflow (STKUN) register are provided to control the lower and
upper limits of the selected stack area. These two stack boundary registers can be used
both for protection against data destruction and for implementation of a circular stack
with hardware-supported system stack flushing and filling (except for option ‘111’°). The
technique for implementing the circular stack is described in Chapter 22.

User’s Manual 3-5 V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1te_s4S|
et~ erivatives

Memory Organization

General Purpose Registers

The General Purpose Registers (GPRs) use a block of 16 consecutive words within the
Internal RAM. The Context Pointer (CP) register determines the base address of the
currently active register bank. This register bank may consist of up to 16 Word-GPRs
(RO, R1, ... R15) and/or of up to 16 Byte-GPRs (RLO, RHO, ... RL7, RH7). The sixteen
Byte-GPRs are mapped onto the first eight Word-GPRs (see Table 3-2).

In contrast to the system stack, a register bank grows from lower towards higher address
locations and occupies a maximum space of 32 Bytes. The GPRs are accessed via short
2-, 4-, or 8-bit addressing modes using the Context Pointer (CP) register as base
address (independent of the current DPP register contents). Additionally, each bit in the
currently active register bank can be accessed individually.

Table 3-2 Mapping of General Purpose Registers to RAM Addresses

Internal RAM Address |Byte Registers Word Register
<CP> + 1Eq - R15
<CP> + 1CH - R14
<CP> + 1Ay - R13
<CP> + 184 - R12
<CP> + 164 - R11
<CP> + 144 - R10
<CP> + 124 - R9
<CP> + 104 - R8
<CP> + OEy RH7 RL7 R7
<CP> + 0Cq RH6 RL6 R6
<CP> + 0Ay RH5 RL5 R5
<CP> + 08y RH4 RL4 R4
<CP> + 064 RH3 RL3 R3
<CP> + 04y RH2 RL2 R2
<CP> + 02y RH1 RL1 R1
<CP> + 004 RHO RLO RO

The C164ClI supports fast register bank (context) switching. Multiple register banks can
physically exist within the Internal RAM at the same time. Only the register bank selected
by the Context Pointer register (CP) is active at a given time, however. Selecting a new
active register bank is done simply by updating the CP register. A particular Switch
Context (SCXT) instruction performs register bank switching and automatically saves

User’s Manual 3-6 V3.1, 2002-02

—

Infineon
ec no Ogy

C164Cl/C164SI
Derivatives

Memory Organization

the previous context. The number of implemented register banks (arbitrary sizes) is
limited only by the size of the available internal RAM.
Details on using, switching, and overlapping register banks are described in Chapter 22.

PEC Source and Destination Pointers

The 16 word locations in the Internal RAM from 00’FCEOy to 00'FCFE (just below the
bit-addressable section) are provided as source and destination address pointers for
data transfers on the eight PEC channels. Each channel uses a pair of pointers stored
in two subsequent word locations with the source pointer (SRCPx) on the lower and the
destination pointer (DSTPx) on the higher word address (x =7 ... 0).

/\/ /\/
. 00 FDOO
00 FCFEH DSTP7 00 FCFEH
00 FCFCH SRCP7 00 FCEO
J/ 00 FCDE
PEC y
Source /
and //
Destination / Internal
Pointers J/ RAM
00 FCE2H DSTPO 00 F600 1
00 FCEO SRCPO 00 FSFE
/\/ /\/
MCD03903
Figure 3-4 Location of the PEC Pointers

Whenever a PEC data transfer is performed, the pair of source and destination pointers
(selected by the specified PEC channel number) is accessed independently of the
current DPP register contents. The locations referred to by these pointers are accessed
independently of the current DPP register contents as well. If a PEC channel is not used,
the corresponding pointer locations are available and can be used for word or byte data
storage.

For more details on the use of the source and destination pointers for PEC data transfers
see Chapter 5.

User’s Manual 3-7 V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1t<_s4S|
et~ erivatives

Memory Organization

Special Function Registers

The functions of the CPU, the bus interface, the 10 ports, and the on-chip peripherals of
the C164CI are controlled via a number of Special Function Registers (SFRs). These
SFRs are arranged within two areas of 512 Bytes each. The first register block, the SFR
area, is located in the 512 Bytes above the Internal RAM (00'FFFFy ... 00’FEOOy). The
second register block, the Extended SFR (ESFR) area, is located in the 512 Bytes below
the Internal RAM (00'F1FFy ... 00'’FO00y).

Special Function Registers can be addressed via indirect and long 16-bit addressing
modes. Using an 8-bit offset together with an implicit base address allows word SFRs
and their respective low bytes to be addressed. However, this does not work for the
respective high bytes!

Note: Writing to any byte of an SFR causes the non-addressed complementary byte to
be cleared!

The upper half of each register block is bit-addressable, so the respective control/status
bits can be modified directly or checked using bit addressing.

When accessing registers in the ESFR area using 8-bit addresses or direct bit
addressing, an Extend Register (EXTR) instruction is required beforehand to switch the
short addressing mechanism from the standard SFR area to the Extended SFR area.
This is not required for 16-bit and indirect addresses. The GPRs R15 ... RO are
duplicated, i.e. they are accessible within both register blocks via short 2-, 4- or 8-bit
addresses without switching.

ESFR _SWITCH EXAMPLE:

EXTR #4 ;Switch to ESFR area for next 4 instr.
MOV ODP8, #dataleé ;ODP2 uses 8-bit reg addressing

BFLDL DP8, #mask, #data8 ;Bit addressing for bit fields

BSET DP1H.7 ;Bit addressing for single bits

MOV T8REL, R1 ;T8REL uses 16-bit mem address,

;R1 is duplicated into the ESFR space
; (EXTR is not required for this access)
e e T R ; The scope of the EXTR #4 instruction..
;...ends here!
MOV T8REL, R1 ;T8REL uses 16-bit mem address,
;R1 is accessed via the SFR space

In order to minimize the use of the EXTR instructions the ESFR area primarily holds
registers which are mainly required for initialization and mode selection. Registers which
need to be accessed frequently are allocated to the standard SFR area wherever
possible.

Note: The tools are equipped to monitor accesses to the ESFR area and will
automatically insert EXTR instructions, or issue a warning in case of missing or
excessive EXTR instructions.

User’s Manual 3-8 V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1t<_s4S|
et~ erivatives

Memory Organization

3.3 The On-Chip XRAM

The C164CI provides access to 2 KBytes of on-chip extension RAM. The XRAM is
located within data page 3 (organized as 1 K x 16). As the XRAM is connected to the
internal XBUS it is accessed like external memory, however, no external bus cycles are
executed for these accesses. XRAM accesses are globally enabled or disabled via bit
XPEN in register SYSCON. This bit is cleared after reset and may be set via software
during the initialization to allow accesses to the on-chip XRAM. When the XRAM is
disabled (default after reset) all accesses to the XRAM area are mapped to external
locations. The XRAM may be used for both code (instructions) and data (variables, user
stack, tables, etc.) storage.

Code fetches are always made on even byte addresses. The highest possible code
storage location in the XRAM is either OO’E7FEy for single word instructions, or
00’E7FCy for double word instructions. The respective location must contain a branch
instruction (unconditional), because sequential boundary crossing from XRAM to
external memory is not supported and causes erroneous results.

Any word and byte data read accesses may use the indirect or long 16-bit addressing
modes. There is no short addressing mode for XRAM operands. Any word data access
is made to an even byte address. The highest possible word data storage location in the
XRAM is O0’E7FEy. For PEC data transfers the XRAM can be accessed independently
of the contents of the DPP registers via the PEC source and destination pointers.

Note: As the XRAM appears like external memory it cannot be used for the C164Cl’s
system stack or register banks. The XRAM is not provided for single bit storage
and therefore is not bit-addressable.

The on-chip XRAM is accessed with the following bus cycles:

* Normal ALE

* No cycle time waitstates (no READY control)
* No tristate time waitstate

* No Read/Write delay

e 16-bit demultiplexed bus cycles (4 TCL)

Even though the XRAM is used like external memory it does not occupy BUSCONXx/
ADDRSELXx registers but rather is selected via additional dedicated XBCON/XADRS
registers. These registers are mask-programmed and are not user accessible. With
these registers the address area 00’EO00y to 00'E7FF is reserved for XRAM accesses.

User’s Manual 3-9 V3.1, 2002-02

—

|nfine0n C164Cl/C164SI
rechno|ogies/ Derivatives
Memory Organization

34 External Memory Space

The C164Cl is capable of using an address space of up to 16 MBytes. Only parts of this
address space are occupied by internal memory areas. All addresses which are not used
for on-chip memory (ROM/Flash/OTP or RAM) or for registers may reference external
memory locations. This external memory is accessed via the C164CI’s external bus
interface.

Four memory bank sizes are supported:

Non-segmented mode: 64 KBytes with A15 ... AO on PORTO or PORT1
2-bit segmented mode: 256 KBytes with A17 ... A16 on Port 4

and A15 ... AO on PORTO or PORT1
4-bit segmented mode: 1 MByte with A19 ... A16 on Port 4

and A15 ... AO on PORTO or PORT1
6-bit segmented mode: 4 MBytes with A21 ... A16 on Port 4

and A15 ... AO on PORTO or PORT1

Each bank can be directly addressed via the address bus, while the programmable chip
select signals can be used to select various memory banks.

The C164Cl also supports four different bus types:

Multiplexed 16-bit Bus with address and data on PORTO (Default after Reset)
Multiplexed 8-bit Bus with address and data on PORTO/POL

Demultiplexed 16-bit Bus with address on PORT1 and data on PORTO
Demultiplexed 8-bit Bus with address on PORT1 and data on POL

Memory model and bus mode are selected during reset by pin EA and PORTO pins. For
further details about the external bus configuration and control please refer to Chapter 9.

External word and byte data can only be accessed via indirect or long 16-bit addressing
modes using one of the four DPP registers. There is no short addressing mode for
external operands. Any word data access is made to an even byte address.

For PEC data transfers the external memory in segment O can be accessed
independently of the contents of the DPP registers via the PEC source and destination
pointers.

The external memory is not provided for single bit storage and therefore it is not
bitaddressable.

User’s Manual 3-10 V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1t<_s4S|
et~ erivatives

Memory Organization

3.5 Crossing Memory Boundaries

The address space of the C164CI is implicitly divided into equally sized blocks of
different granularity and into logical memory areas. Crossing the boundaries between
these blocks (code or data) or areas requires special attention to ensure that the
controller executes the desired operations.

Memory Areas are partitions of the address space assigned to different kinds of
memory (if provided at all). These memory areas are the Internal RAM/SFR area, the
internal ROM/Flash/OTP (if available), the on-chip X-Peripherals (if integrated), and the
external memory.

Accessing subsequent data locations which belong to different memory areas is no
problem. However, when executing code, the different memory areas must be switched
explicitly via branch instructions. Sequential boundary crossing is not supported and
leads to erroneous results.

Note: Changing from the external memory area to the internal RAM/SFR area takes
place within segment 0.

Segments are contiguous blocks of 64 KBytes each. They are referenced via the Code
Segment Pointer CSP for code fetches and via an explicit segment number for data
accesses overriding the standard DPP scheme.

During code fetching, segments are not changed automatically, but rather must be
switched explicitly. The instructions JMPS, CALLS and RETS will do this.

In larger sequential programs, make sure that the highest used code location of a
segment contains an unconditional branch instruction to the respective following
segment to prevent the prefetcher from trying to leave the current segment.

Data Pages are contiguous blocks of 16 KBytes each. They are referenced via the data
page pointers DPP3 ... DPPO and via an explicit data page number for data accesses
overriding the standard DPP scheme. Each DPP register can select one of the possible
1024 data pages. The DPP register which is used for the current access is selected via
the two upper bits of the 16-bit data address. Therefore, subsequent 16-bit data
addresses which cross the 16-KByte data page boundaries will use different data page
pointers, while the physical locations need not be subsequent within memory.

User’s Manual 3-11 V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1t<_s4S|
et~ erivatives

Memory Organization

3.6 Protection of the On-Chip Mask ROM

The on-chip mask ROM of the C164CI can be protected against read accesses of both
code and data. ROM protection is established during the production process of the
device (a ROM mask can be ordered with a ROM protection or without it). No software
control is possible, i.e. the ROM protection cannot be disabled or enabled by software.

When a device has been produced with ROM protection active, the ROM contents are
protected against unauthorized access by the following measures:

* No data read accesses to the internal ROM are permitted by any instruction which is
executed from any location outside the on-chip mask ROM (including IRAM, XRAM,
and external memory).

A program cannot read any data out of the protected ROM from outside.
The read data will be replaced by the default value 009By for any read access to any
location.

* No codes fetches from the internal ROM can be made by any instruction which is
executed from any location outside the on-chip mask ROM (including IRAM, XRAM,
and external memory).

A program cannot branch to a location within the protected ROM from outside. This
applies to JUMPs as well as to RETurns. A called routine within RAM or external
memory can never return to the protected ROM.
The fetched code will be replaced by the default value 009By, for any access to any
location. This default value will be decoded as the instruction “TRAP #00” which will
restart program execution at location 00’0000

Note: ROM protection may be used for applications where the complete software fits
into the on-chip ROM, or where the on-chip ROM holds initialization software
which is then replaced by external application software (for example). In the latter
case no data (constants, tables, etc.) can be stored within the ROM. The ROM
itself should be mapped to segment 1 before branching outside, so an interrupt
vector table can be established in external memory.

User’s Manual 3-12 V3.1, 2002-02

—

|nﬁneon C164Cl/C164SI
rechno|ogies/ Derivatives
Memory Organization

3.7 OTP Memory Programming

During normal operation the One-Time-Programmable (OTP) memory appears like a
standard ROM. In the special OTP programming modes, however, the OTP memory can
be programmed by writing to its special programming interface. Programming is
executed in units of 16-bit words and each programming cycle takes about 100 us. OTP
programming requires an external programming voltage of Vpp = 11.5V + 5% which is
applied to pin EA/Vpp.

The OTP memory can be programmed in CPU Host Mode (CHM) via software or in
External Host Mode (EHM) via external hardware.

10 ns

— |- — 100 ns |=—

ADDR OTP Word Address

DATA Programming Data

—= 120ns f(=—

e——— 100 ys ———

WR \ 1)
Vpp —= 10pys ‘=— —1100 ns f=—
EA/Vpp 2)
<Voo 50 ns 50 ns
— |————— — |——
CE

MCT05093

) Earliest possible begin of next programming cycle.
2) Vpp must be switched off for verify accesses, it may remain on for subsequent programming cycles.
The special signal RSEL must fulfill the same timing requirements as the address lines.

Note: All timings represent minimum values.

Figure 3-5 OTP Programming Cycle

User’s Manual 3-13 V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1te_s4S|
et~ erivatives

Memory Organization

Verify cycles may be executed to ensure correct programming. Programming cycles and
verify cycles may alternate in order to check each word immediately. However, the total
programming time can be reduced by programming blocks of data continuously and then
verifying the blocks (this saves the Vpp settling time).

Note: The programming voltage Vpp must be applied for all programming cycles and
must be removed for all other accesses, i.e. verify cycles and standard read
cycles. The settling time is 10 us in each case.

In EHM this must be controlled by the external host, in CHM the CPU may control
Vpp via an output port line.

—» 50 NS (=—

ADDR OTP Word Address
—» 15ns -
DATA
a———— 50N ——— >
RD
10ps f=—

Vpp
EA/Npp

<V

—"DD
MCT05094

The special signals CE and RSEL must fulfill the same timing requirements as the address lines.
Note: All timings represent minimum values.

Figure 3-6 OTP Verify/Read Cycle

The programming cycles can be controlled in two different ways:

In CPU Host Mode (CHM) the CPU of the C164Cl itself controls the programming cycles
via the OTP programming interface. The programming routine must be fetched from
outside the OTP memory (on-chip RAM or external memory).

In External Host Mode (EHM) the C164Cl is put into emulation mode where the CPU
and the generic peripherals are disabled. The on-chip OTP memory can be accessed by
an external master via the C164CI’s bus interface. The bus interface signals change
their direction in this mode.

User’s Manual 3-14 V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1t<_s4S|
et~ erivatives

Memory Organization

3.7.1 Selecting an OTP Programming Mode

Both programming modes can only be enabled via reset configuration.

CPU Host Mode (CHM) is enabled after an external reset by pulling low pin POL.2 in
either standard startup mode or in bootstrap loader mode. Pins POL.5 ... O here
represent 11’1011 (standard) or 10°1011g (BSL). After a single-chip mode reset CHM
is automatically enabled without additional control.

Note: When CHM is enabled in standard startup mode program execution will always
begin out of external memory, disregarding the level on pin EA/V pp.
When CHM is enabled in bootstrap loader mode the programming routine(s) can
be loaded via the serial interface. This allows in-system programming of an empty
OTP module.

External Host Mode (EHM) is enabled by selecting emulation mode (POL.0 = ‘0’) and
also pulling low pin POL.5. Pins POL.5 ... O represent 01’1110g in this case.

CPU Host Mode Programming

CHM is useful for in-system programming, especially combined with the bootstrap loader
mode. CHM programming cycles are controlled via the C164Cl’s programming interface
which replaces the external bus interface signals. Pin EA/Vpp accepts the external
programming voltage during programming cycles (see diagram).

The programming interface is realized as an XBUS peripheral and uses the address
area 00’'EDCOy - OO’'EDDFy. The interface is activated only in programming mode and
cannot be accessed in all other cases. The OTP module’s interface signals are not
externally asserted but rather controlled via three registers:

Table 3-3 OTP Programming Interface Registers

Register | Physical | Description Reset
Name Address Value

OPCTRL |[EDCOy | Control register, provides the control signals and the 00074
upper 8 address lines (A23 ... A16).

OPAD EDC2y | Address register provides the lower 15 address lines | 0000y
of the physical OTP word address (A15 ... A1).
Note: Address line AO is not evaluated.

OPDAT |EDC4y |Data register provides the word to be stored or read 00004
from the module.

User’s Manual 3-15 V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1te_s4S|
et~ erivatives

Memory Organization

External Host Mode Programming

In this mode the signals to control a programming cycle are generated by an external
host using the C164CI’s bus interface. The external host provides the data to be
programmed. The C164Cl itself is switched off and its OTP module can be accessed like
standalone memory.

In External Host Mode the following port pins represent the interface to the C164CI’s
OTP module:

Table 3-4 External Host Mode Interface Signals”

Signal Pin Description

ADDR P1H.7 - P1L.1 | Physical OTP word address (address line AO is not
evaluated)

DATA POH.7 - POL.0 | Word to be programmed or verified

RD RD Verify cycle control

WR WR Programming cycle control

CE P3.9 OTP enable signal

RSEL P3.8 Control signal RSEL used for protection lock control,
must be ‘0’ for OTP programming cycles

- P3.4, P3.6 Static high outputs

RSTOUT |RSTOUT Must be held high (pullup resistor)

Vep EA/Vpp External programming voltage

Y The specific behavior of the C164Cl in emulation mode (prerequisite for EHM) is described in Section 20.4.1.

The access cycles generated by the external host must fulfill the timing requirements
shown in the timing diagrams above.

Note: EHM is a variety of the emulation mode where pin P0.15 (POL.7) is inverted during
the reset configuration. This influences the selected clock generation mode.
For EHM operation direct drive or prescaler mode must be configured. If the
on-chip oscillator is not supplied with a clock signal the oscillator watchdog must
not be disabled, so the PLL can provide the clock signal instead.

User’s Manual 3-16 V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1t<_s4S|
et~ erivatives

Memory Organization

3.7.2 OTP Module Addressing

When the OTP module is read in normal mode (via its CPU interface) it appears like a
standard ROM and its lower 32-KByte block within the internal ROM area can also be
mapped to the respective lower half of segment 0 or segment 1:

For segment 0 mapping it uses locations 00°'0000y to 00’7FFFy and 01’8000y to
O1TFFFFy,
for segment 1 mapping it uses locations 01’0000y to 01'FFFF.

In programming mode, however, the OTP module is addressed physically via the
external interface or the OTP programming interface. In this case the OTP module
appears as a contiguous block using the (physical) addresses 00°'0000y to 00’FFFF.

Note: When entering a programming mode (EHM or CHM) the on-chip OTP module is
disabled independent from the selection via pin EA. The programming software (in
CHM) must not enable the OTP module’s CPU interface by setting bit ROMEN in

register SYSCON.
OPCTRL
OTP Control Register XReg (EDCOp) Reset Value: 0007y
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SEGAD - - - - RS | CEQ \WRQ| RDQ
: ' —w | | T
Bit Function
RDQ Read Signal (active low)
0: OTP module selected for a verify read access
1: Read access is completed
WRQ Write Signal (active low)
0: OTP module selected for a write access (programming)
1: Write access is completed
CEQ OTP Module Enable Signal (active low)
0: OTP module is selected
1: OTP module is deselected, no access
RS Register Select Signal (RSEL)
0: Access the OTP memory module
1: Access the control section (read protection control)
SEGAD Physical Segment Address
Provides the upper (physical) address lines (A23 ... A16) to the OTP
memory module (SEGAD must be 00y for the C164Cl)

User’s Manual 3-17 V3.1, 2002-02

—

!nfiqeon c1eSC|_/c1te_s4S|
et~ erivatives

Memory Organization

An OTP programming/verify cycle is executed by a sequence of accesses to the
programming interface which emulate the externally controlled cycles (see example
below).

OTP Programming Example
The on-chip OTP memory is programmed in CHM executing the following procedure:
Note: The example below assumes segment 0 (RH3 = 00p).

MOV R1, #OTP_START ;R1 = OTP pointer

MOV R2, #DATA BLOCK ;R2 = Source data pointer

MOV R3, #0003H ;03H: enable module, cmd. idle
MOV DPP3:0PCTRL, R3 ;Initially enable the OTP module
BSET VPP ENABLE ;External progr. voltage ON

CALL MICROSEC 010 ;Let VPP settle for 10 us

PROG_OTP_WORD:

MOV DPP3:0PAD, R1 ;Select current address

MOV RO, [R2+] ;Move source data word ..

MOV DPP3 :0OPDAT, RO ;.. Lo data register

MOV R3, #0001H ;01H: enable module, WR active

MOV DPP3:0OPCTRL, R3 ;Select OTP module for write access
CALL MICROSEC 100 ;Keep the write signal low for 100 us
MOV R3, #0003H ;03H: enable module, cmd. idle

MOV DPP3:0PCTRL, R3 ;Trailing edge of write signal

ALT VERIFY: ;This block only for alternating verify
BCLR VPP ENABLE ;External progr. voltage Off

CALL MICROSEC 010 ;Let VPP settle for 10 us

MOV R3, #0002H ;02H: enable module, RD active

MOV DPP3 :0PCTRL, R3 ;Select OTP module for read access
MOV R3, #0003H ;03H: enable module, cmd. idle

MOV DPP3:0PCTRL, R3 ;Trailing edge of read signal

CMP RO, DPP3:0PDAT ;Verify data reg. with original data
JMP cc_NE, PROG_FAILED

BSET VPP _ENABLE ;External progr. voltage ON

CALL MICROSEC 010 ;Let VPP settle for 10 us

User’s Manual 3-18 V3.1, 2002-02

—

Infineon N Derivatives
technologies
9/
Memory Organization

PROG LOOP:
CMPI2 R1, #BLOCK LIMIT ;Next OTP location
JMP cc_ULE, PROG_OTP _WORD;Repeat for the whole data block
BCLR VPP ENABLE ;External progr. voltage Off
CALL MICROSEC 010 ;Let VPP settle for 10 us

;Block verification could be ..

;... executed here
MOV R3, #0007H
MOV DPP3 :0PCTRL, R3 ;OTP module deselected

User’s Manual 3-19 V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1te_s4S|
et~ erivatives

Memory Organization

3.7.3 Read Protection Control

The on-chip OTP memory can be protected against unauthorized accesses (read or
execute).

When the read protection is active ...

* no programming cycles can be executed (neither in EHM nor in CHM)
* no verify cycles can be executed
e OTP locations can only be read by instructions fetched from the OTP itself

The OTP read protection is activated by a specific programming cycle which has the
register select signal (RSEL) active (contrary to normal programming cycles). This
special cycle must write the value 0000y to register address 000Ey. A verify cycle can
be executed directly after activating the read protection, i.e. without leaving
programming mode. The active read protection is indicated with data bit DO = ‘0’.

Note: OTP read protection is irreversible. When the OTP read protection was activated
once it remains active for each and every subsequent access. Also subsequent
programming cycles are no more possible.

OTP Read Protection Example

The OTP read protection is activated in CHM executing the following procedure:
Note: The example below assumes segment 0 (RHO = 00p).

MOV RO, #0003H ;Enable module, cmd. idle

MOV DPP3:0PCTRL, RO ;Initially enable the OTP module
BSET VPP _ENABLE ;External progr. voltage ON

CALL MICROSEC 010 ;Let VPP settle for 10 us

MOV RO, #O0O0OEH ;Move special register address ..
MOV DPP3:0PAD, RO ;.. Lo address register

MOV RO, #0000H ;Move special control word ..

MOV DPP3:0PDAT, RO ;.. to data register

MOV RO, #0009H ;Select special OTP register ..
MOV DPP3:0OPCTRL, RO ;... Tor write access

CALL MICROSEC 100 ;Keep the write signal low for 100 us
MOV RO, #O00OBH

MOV DPP3:0PCTRL, RO ;Trailing edge of write signal
BCLR VPP _ENABLE ;External progr. voltage Off
CALL MICROSEC 010 ;Let VPP settle for 10 us

;Read protection verify could be ..
;... executed here

MOV RO, #0007H
MOV DPP3:0PCTRL, RO ;OTP module deselected

User’s Manual 3-20 V3.1, 2002-02

—

|nfine0n C164Cl/C164SI
rechno|ogies/ Derivatives
Central Processing Unit (CPU)

4 Central Processing Unit (CPU)

Basic tasks of the Central Processing Unit (CPU) are to fetch and decode instructions,
to supply operands for the Arithmetic and Logic unit (ALU), to perform operations on
these operands in the ALU, and to store the previously calculated results. As the CPU is
the main engine of the C164CI microcontroller, it is also affected by certain actions of the
peripheral subsystem.

Because a four stage pipeline is implemented in the C164Cl, up to four instructions can
be processed in parallel. Most instructions of the C164Cl are executed in one machine
cycle (2 CPU clock periods) due to this parallelism.

This chapter describes how the pipeline works for sequential and branch instructions in
general, and the hardware provisions which have been made to speed up execution of
jump instructions in particular. General instruction timing is described including standard
and exceptional timing.

While internal memory accesses are normally performed by the CPU itself, external
peripheral or memory accesses are performed by a particular on-chip External Bus
Controller (EBC) which is invoked automatically by the CPU whenever a code or data
address refers to the external address space.

BUSCON 2 ADDRSEL 2
BUSCON 3 ADDRSEL 3
BUSCON 4 ADDRSEL 4

r CPU

' ' 16

: : K 2 Internal
SP MDH — — RAM

| |

' ' STKOY MDL s\

l | STKUN ‘ \

: : Exec.Unit Mul /Div—HW ‘ N . \ T

I I Instr.Pir. Bit—Mask Gen] '[General — % =T

Instr.Reg. " 7] - —

: : 32 ;ALU; ‘_ Purpose \j \ — =
4-Stage 16—bit B = — =

: ROM I i: :1]: Pipeline () ‘ Registers = =

I Barrel-Shifter! ‘ B _ A / — =

! - . -
PSW ™ . V RO

: SYSCON [Contfext Pir. | ‘— - // L

l

I BUSCON 0 ‘ = 5

l

|

|

l

|

|

|

|
|
l
|
l
|
, BUSCON 1 ADDRSEL 1] —2—1 /
|
|
l
|
|
|

FData Page Ptr.q Code Seg. Ptr.

MCB02147

Figure 4-1 CPU Block Diagram

User’'s Manual 4-1 V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1t<_s4S|
et~ erivatives

Central Processing Unit (CPU)

Whenever possible, the CPU continues operating while an external memory access is
in progress. If external data are required but are not yet available, or if a new external
memory access is requested by the CPU before a previous access has been completed,
the CPU will be held by the EBC until the request can be satisfied. The EBC is described
in a separate chapter.

The on-chip peripheral units of the C164CI work nearly independently of the CPU with a
separate clock generator. Data and control information are interchanged between the
CPU and these peripherals via Special Function Registers (SFRs).

Whenever peripherals need a non-deterministic CPU action, an on-chip Interrupt
Controller compares all pending peripheral service requests against each other and
prioritizes one of them. If the priority of the current CPU operation is lower than the
priority of the selected peripheral request, an interrupt will occur.

There are two basic types of interrupt processing:

e Standard interrupt processing forces the CPU to save the current program status
and return address on the stack before branching to the interrupt vector jump table.

* PEC interrupt processing steals only one machine cycle from the current CPU
activity to perform a single data transfer via the on-chip Peripheral Event Controller
(PEC).

System errors detected during program execution (hardware traps) and external
non-maskable interrupts are also processed as standard interrupts with a very high
priority.

In contrast to other on-chip peripherals, there is a closer conjunction between the
watchdog timer and the CPU. If enabled, the watchdog timer expects to be serviced by
the CPU within a programmable period of time, otherwise it will reset the chip. Thus, the
watchdog timer is able to prevent the CPU from going astray when executing erroneous
code. After reset, the watchdog timer starts counting automatically but, it can be disabled
via software, if desired.

In addition to its normal operation state, the CPU has the following particular states:

* Reset state: Any reset (hardware, software, watchdog) forces the CPU into a
predefined active state.

* IDLE state: The clock signal to the CPU itself is switched off, while the clocks for the
on-chip peripherals keep running.

* SLEEP state: All of the on-chip clocks are switched off (RTC clock selectable), external
interrupt inputs are enabled.

* POWER DOWN state: All of the on-chip clocks are switched off (RTC clock selectable),
all inputs are disregarded.

Transition to an active CPU state is forced by an interrupt (if in IDLE or SLEEP mode) or
by a reset (if in POWER DOWN mode).

The IDLE, SLEEP, POWER DOWN, and RESET states can be entered by specific
C164ClI system control instructions.

User’'s Manual 4-2 V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1t<_s4S|
et~ erivatives

Central Processing Unit (CPU)

A set of Special Function Registers is dedicated to the functions of the CPU core:

* General System Configuration : SYSCON (RPOH)

e CPU Status Indication and Control : PSW

e Code Access Control :IP, CSP

e Data Paging Control : DPPO, DPP1, DPP2, DPP3
e GPRs Access Control :CP

e System Stack Access Control : SP, STKUN, STKOV

* Multiply and Divide Support : MDL, MDH, MDC

* ALU Constants Support : ZEROS, ONES

4.1 Instruction Pipelining

The instruction pipeline of the C164CI partitions instruction processing into four stages,
each of which has a specific task:

18t _, FETCH: In this stage, the instruction selected by the Instruction Pointer (IP) and
the Code Segment Pointer (CSP) is fetched from either the internal ROM, internal RAM,
or external memory.

2"d _, DECODE: In this stage, the instructions are decoded and, if required, the operand
addresses are calculated and the respective operands are fetched. For all instructions
which implicitly access the system stack, the SP register is either decremented or
incremented as specified. For branch instructions, the Instruction Pointer and the Code
Segment Pointer are updated with the desired branch target address (provided that the
branch is taken).

3'd 5, EXECUTE: In this stage, an operation is performed on the previously fetched
operands in the ALU. Additionally, the condition flags in the PSW register are updated
as specified by the instruction. Also, all explicit writes to the SFR memory space and all
auto-increment or auto-decrement writes to GPRs used as indirect address pointers are
performed during the execute stage of an instruction.

4™ 5 WRITE BACK: In this stage, all external operands and the remaining operands
within the internal RAM space are written back.

A special feature of the C164Cl is the use of so-called injected instructions. Injected
instructions are generated internally by the machine to provide the time needed to
process instructions which cannot be processed within one machine cycle. These
instructions are injected automatically into the decode stage of the pipeline and then they
pass through the remaining stages like every standard instruction. Program interrupts
are performed by means of injected instructions, as well. Although these internally
injected instructions will not be noticed in reality, they are introduced here to ease the
explanation of the pipeline in the following sections.

User’s Manual 4-3 V3.1, 2002-02

—

Infineon
ec no Ogy

C164Cl/C164SI
Derivatives

Central Processing Unit (CPU)

Sequential Instruction Processing

Each single instruction must pass through each of the four pipeline stages regardless of
whether or not all possible stage operations are actually performed. Because passing
through one pipeline stage takes at least one machine cycle, any isolated instruction
takes at least four machine cycles to be completed. Pipelining, however, allows parallel
(simultaneous) processing of up to four instructions. Thus, most of the instructions seem
to be processed in one machine cycle as soon as the pipeline has been filled once after
reset (see Figure 4-2).

Instruction pipelining increases the average instruction throughput considered over a
certain period of time. In the following, any execution time specification for an instruction
always refers to the average execution time due to pipelined parallel instruction
processing.

1 Machine Cycle
FETCH 1 1, I 1, I A
DECODE 1, 1, 1, 1, I
EXECUTE I, 1, I 1,
WRITEBACK 1, 1, 1,
Time > MCT04327
Figure 4-2 Sequential Instruction Pipelining

Standard Branch Instruction Processing

Instruction pipelining helps to speed up sequential program processing. If a branch is
taken, the instruction which has already been fetched is most likely not the instruction
which must be decoded next. Thus, at least one additional machine cycle is normally
required to fetch the branch target instruction. This extra machine cycle is provided by
means of an injected instruction (see Figure 4-3).

1 Machine Cycle Injection

v

BRANCH I I I I I

FETCH

n+2

TARGET

TARGET+1

TARGET+2

TARGET+3

DECODE

I

n

BRANCH

(IINJECT)

ITARGET

ITARGET+1

ITAF{GET+2

EXECUTE

I

n

BRANCH

(IINJECT)

ITARG ET

ITARGET+1

WRITEBACK

I

n

BRANCH

(]INJECT)

ITARGET

Time

»
Ll

MCTO04328

Figure 4-3

User’s Manual

4-4

Standard Branch Instruction Pipelining

V3.1, 2002-02

—

!nfiqeon c1eSC|_/c1te_s4S|
et~ erivatives

Central Processing Unit (CPU)

If a conditional branch is not taken, there is no deviation from the sequential program
flow, and thus no extra time is required. In this case, the instruction after the branch
instruction will enter the decode stage of the pipeline at the beginning of the next
machine cycle after the decoding of the conditional branch instruction.

Cache Jump Instruction Processing

The C164CI incorporates a jump cache to optimize conditional jumps which are
processed repeatedly within a loop. Whenever a jump on cache is taken, the extra time
to fetch the branch target instruction can be saved and thus the corresponding cache
jump instruction in most cases takes only one machine cycle.

This performance is achieved by the following mechanism:

Whenever a cache jump instruction passes through the decode stage of the pipeline for
the first time (provided that the jump condition is met), the jump target instruction is fetched
as usual, causing a time delay of one machine cycle. In contrast to standard branch
instructions, however, the target instruction of a cache jump instruction (JMPA, JMPR,
JB, JBC, JNB, JNBS) is additionally stored in the cache after having been fetched.

After each repeatedly following execution of the same cache jump instruction, the jump
target instruction is not fetched from program memory but, rather, is taken from the
cache and is injected immediately into the decode stage of the pipeline (see Figure 4-4).

A time saving jump on cache is always taken after the second and any further
occurrence of the same cache jump instruction unless an instruction having the
fundamental capability of changing the CSP register contents (JMPS, CALLS, RETS,
TRAP, RETI), or any standard interrupt has been processed during the period of time
between two following occurrences of the same cache jump instruction.

Injection of Cached

Injection Target Instruction
1 Maghine Cycle;
\ 4 \ 4
FETCH In+2 ITARGET ITARGET+1 In+2 ITARGET+1 ITARGET+2
DECODE Cache Jmp (IINJECT) ITARGET Cache Jmp ITARGET ITARGET+1
EXECUTE I Cache Jmp | (I, jecT) I Cache Jmp L ARGET
WRITEBACK I Cache Jmp I Cache Jmp

1st Loop lteration ———» Repeated Loop lteration ———»
MCT04329

Figure 4-4 Cache Jump Instruction Pipelining

User’s Manual 4-5 V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1t<_s4S|
et~ erivatives

Central Processing Unit (CPU)

4.2 Particular Pipeline Effects

Because up to four different instructions are processed simultaneously, additional
hardware has been used in the C164CI to consider all causal dependencies which may
exist on instructions in different pipeline stages. This functionality is provided without a
loss of performance. This extra hardware (for ‘forwarding’ operand read and write
values) resolves most of the possible conflicts (such as multiple usage of buses) in a
time optimized way; thus, in most cases, the pipeline operates without being noticeable
to the user. However, there are some very rare circumstances in which the C164Cl as a
pipelined machine requires attention by the programmer. In these cases, the delays
caused by pipeline conflicts can be used for other instructions in order to optimize
performance.

Context Pointer Updating

An instruction which calculates a physical GPR operand address via the Context Pointer
(CP) register is mostly incapable of using a new CP value, which has been updated by
an immediately preceding instruction. Thus, to ensure that the new CP value is used, at
least one instruction must be inserted between a CP-changing instruction and a
subsequent GPR-using instruction, as shown in the following example:

I, :SCXT CP,#0FCO00Oh ;select a new context
I, - ;jmust not be an instruction using a GPR
I.o :MOV RO, #dataX ;jwrite to GPR 0 in the new context

Data Page Pointer Updating

An instruction which calculates a physical operand address via a particular Data
Page Pointer (DPPn) register (n = 0 to 3), is mostly incapable of using a new DPPn
register value which has been updated by an immediately preceding instruction. Thus,
to ensure that the new DPPn register value is used, at least one instruction must be
inserted between a DPPn-changing instruction and a subsequent instruction which
implicitly uses DPPn via a long or indirect addressing mode, as shown in the following
example:

I, :MOV DPPO, #4 ;select data page 4 via DPPO
I..1 te ;must not be an instruction using DPPO
I..o :MOV DPP0:0000H,R1;move contents of R1 to

;location 01’00004(in data page 4),
;supposed segment is enabled

User’s Manual 4-6 V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1te_s4S|
et~ erivatives

Central Processing Unit (CPU)

Explicit Stack Pointer Updating

None of the RET, RETI, RETS, RETP or POP instructions is capable of correctly using
a new SP register value which has been updated by an immediately preceding
instruction. Thus, in order to use the new SP register value without erroneously
performed stack accesses, at least one instruction must be inserted between an
explicitly SP-writing and any subsequent use of the just mentioned implicitly SP-using
instructions, as shown in the following example:

I, :MOV SP, #0FA40H ;select a new top of stack

I..1 e ;must not be an instruction popping
;operands from the system stack

I,.:o :POP RO ;pop word value from new top of stack
;into RO

Note: Conflicts with instructions writing to the stack (PUSH, CALL, SCXT) are solved
internally by the CPU logic.

Controlling Interrupts

Software modifications (implicit or explicit) of the PSW are made in the execute phase
of the respective instructions. To maintain fast interrupt responses, however, the current
interrupt prioritization round does not consider these changes; that means that an
interrupt request may be acknowledged after the instruction which disables interrupts via
IEN or ILVL or after the following instructions. Time critical instruction sequences
therefore should not begin directly after the instruction disabling interrupts, as shown in
the following examples:

INTERRUPTS OFF:

BCLR IEN ;globally disable interrupts
<Instr non-crits> ;non-critical instruction

<Instr lst-crits> ;begin of

.. ;uninterruptable critical sequence
<Instr last-crits> ;end of critical sequence
INTERRUPTS ON:

BSET IEN ;globally re-enable interrupts
CRITICAL_ SEQUENCE:

ATOMIC #3 ;immediately block interrupts

BCLR IEN ;globally disable interrupts

.. ;here is the uninterruptable sequence
BSET IEN ;globally re-enable interrupts

Note: The described delay of one instruction also applies for enabling the interrupts
system i.e. no interrupt requests are acknowledged until the instruction following
the enabling instruction.

User’'s Manual 4-7 V3.1, 2002-02

—

!nfiqeon c1sSC|_/c1t<_s4S|
et~ erivatives

Central Processing Unit (CPU)

External Memory Access Sequences

The effect described here will become noticeable only when watching the external
memory access sequences on the external bus (by means of a Logic Analyzer). Different
pipeline stages can simultaneously put a request on the External Bus Controller (EBC).
The sequence of instructions processed by the CPU may differ from the sequence of the
corresponding external memory accesses performed by the EBC due to the predefined
priority of external memory accesses:

18t Write Data
ond Fetch Code
3rd Read Data

Initialization of Port Pins

Direction modification of port pins (input or output) become effective only after the
instruction following the modifying instruction. As bit instructions (BSET, BCLR) use
internal read-modify-write sequences which access the entire port, instructions which
modify the port direction should be followed by an instruction that does not access the
same port (see example below).

PORT INIT WRONG:
BSET DP3.13 ;change direction of P3.13 to output
BSET P3.9 ;P3.13 is still input,
;rd-mod-wr reads pin P3.13
PORT INIT RIGHT:

BSET DP3.13 ;change direction of P3.13 to output
NOP ;any instruction not accessing port 3
BSET P3.9 ;P3.13 is now output,

;rd-mod-wr reads P3.13's output latch

Note: Special attention must be paid to interrupt service routines that modify the same
port as the software they have interrupted.

Changing the System Configuration

The instruction following an instruction that changes the system configuration via
register SYSCON (e.g. the mapping of the internal ROM, segmentation, stack size)
cannot use the new resources (e.g. ROM or stack). In these cases, an instruction which
does not access these resources should be inserted. Code accesses to the new ROM
area are possible only after an absolute branch to this area.

Note: As a rule, instructions that change ROM mapping should be executed from
internal RAM or external memory.

User’s Manual 4-8 V3.1, 2002-02

—

|nfine0n C164Cl/C164SI
rechno|ogies/ Derivatives
Central Processing Unit (CPU)

BUSCON/ADDRSEL

The instruction following an instruction that changes the properties of an external
address area cannot access operands within the new area. In these cases, an
instruction that does not access this address area should be inserted. Code accesses to
the new address area should be made after an absolute branch to this area.

Note: As a rule, instructions that change external bus properties should not be executed
from the respective external memory area.

Timing

Instruction pipelining generally reduces the average instruction processing time
significantly (from four to one machine cycles). However, there are some rare cases in
which a particular pipeline situation causes the processing time for a single instruction
to be extended either by one-half or by one machine cycle. Although this additional time
represents only a tiny part of the total program execution time, it might be beneficial to
avoid these pipeline-caused time delays in time-critical program modules.

Section 4.3 below provides a general execution time description and some hints on
optimizing time-critical program parts with regard to such pipeline-caused timing iss