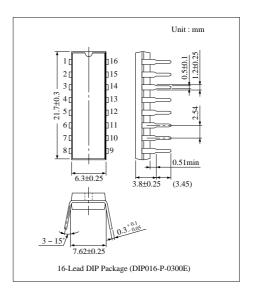
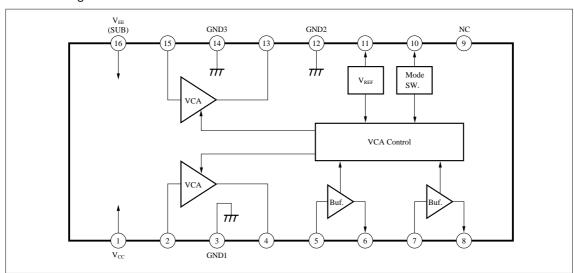
AN7384N


Electronic Volume IC for Cassette Deck

Overview


The AN7384N is a volume control IC for recording level adjustment of cassette deck and mini component stereo.

■ Features

- High input dynamic range
- Low output noise voltage
- Capable of selecting two kinds of control mode
- (1) L, R, independent volume
- (2) Coalition volume + L, R balance
- Reference voltage source for control voltage built-in

■ Block Diagram

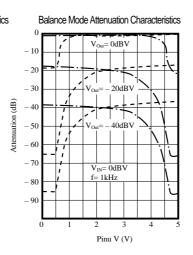
■ Absolute Maximum Ratings (Ta= 25°C)

Parameter	Symbol	Rating	Unit
Supply Voltage	V _{CC}	±12	V
Supply Current	I_{CC}	30	mA
Power Dissipation	P_D	800	mW
Operating Ambient Temperature	$T_{ m opr}$	−20 ~ + 70	°C
Storage Temperature	T_{stg}	−55 ~ +150	°C

■ Recommended Operating Range (Ta = 25°C)

Parameter	Symbol	Range	
Operating Supply Voltage Range	V_{CC}	±7V ~ ±11V	

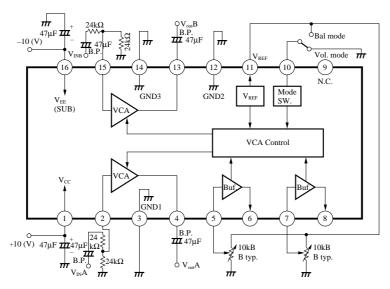
■ Electrical Unaracteristics ($V_{CC} = \pm 10V$, Ta = 25 C)


Parameter Symbol Condition		min.	typ.	max.	Unit	
Positive Side Circuit Current	I_{CC}	V_{in} = 0dBV, Volume mode, V_{cont} = V_{ref}	_	12	20	mA
Negative Side Circuit Current	I_{EE}	V_{in} = 0dBV, Volume mode, V_{cont} = V_{ref}	-20	-9.1	_	mA
Attenuation – 1	ATT – 1 *1	V_{in} = 0dBV, Volume mode, V_{cont} = V_{ref}	-1	0	1	dBV
Attenuation – 2	ATT – 2 *1	V _{in} = 0dBV, Volume mode, V _{cont} = 0V		-85	-80	dBV
Channel Balance – 1	CB – 1 *1	V_{in} = 0dBV, Volume mode, V_{cont} = V_{ref}	-2	0	2	dB
Distortion Rate – 1	THD – 1 *1	V_{in} = -20dBV, Volume mode, V_{cont} = V_{ref}		0.05	0.1	%
Distortion Rate – 2	THD - 2 *1	V _{in} = 0dBV, Volume mode, at V _{cont} = -20dB		0.15	0	%
Noise Output Voltage – 1	V _{no} - 1 *1	Without input (R_g = 0Ω), Volume mode, V_{cont} = V_{ref} , A curve		-106	-100	dBV
Noise Output Voltage – 2	$V_{no} - 2 *1$	Without input (R _g = 0Ω), Volume mode, V _{cont} = $0V$, A curve	_		-110	dBV
Channel Balance – 2	CB – 2 *1	V _{in} = 0dBV, Volume mode, at ATT= -20dB	-3	0	3	dB
Max. Input Voltage	$V_{i(max.)}^{*1}$	THD= 3%, ATT= -20dB	14.8	16		dBV
Max. Output Voltage	$V_{O(max.)}^{*_1}$	THD= 3%, $V_{cont} = V_{ref}$	1.5			dBV
Control Voltage Range	$V_{cont} *1$		0	_	\mathbf{V}_{ref}	V
Volume Mode Switching Voltage	V _{10 (V)}	·	0	_	1.5	V
Balance Mode Switching Voltage	V _{10 (B)}		3.5	_	4.8	V
Balance Mode Control Gain (Lch.)	ATT_{BG}	Volume mode, Input –20dBV V_{cont} to Pin5, V_7 = 0.5 V_{ref}	-22	-20	-18	dBV
Balance Mode Channel Balance	CB – 3	Volume mode, Input –20dBV V_{cont} to Pin5, $V_7 = 0.5V_{ref}$, L/R	-3	0	3	dB

^{*1 2-}channel

■ Characteristics Curve

Independent Volume Mode Attenuation Characteristics


V_{cont.1}
V_{REF}
V_{REF}
V_{REF}
V_{Cont.1}
V_{REF}

Panasonic

^{*2} Filter of 18dB/oct should be used at measurement.

■ Application Circuit

■ Pin Descriptions

Pin No.	Pin Name	Description	Impedance	Equivalent Circuit
1	Positive Side Power Supply	Positive side supply voltage pin		
2 15	Input Pin	Each channel input pin Pin2 – ch. A Pin15 – ch. B	_	20μA 20μA
3	A-ch. GND	A-ch. side VCA system GND pin	_	
4 13	Output Pin	Each channel output pin Pin4 – A-ch. Pin13 – B-ch.	1.8kΩ	4 (13) \$1.8kΩ
5	A-ch. Control Voltage Input	Control DC input pin Pin11Low – A-ch. side independent control Pin11Low – A, B-ch. balance control	_	3
7	B-ch. Control Voltage Input	Control DC input pin Pin11High – B-ch. side independent control Pin11High – A, B-ch. balance control	_	Ы 30µА

■ Pin Descriptions (Cont.)

Pin No.	Pin Name	Description	Impedance	Equivalent Circuit
6	A-ch. Control Voltage Output	Control DC voltage buffer output pin		
8	B-ch. Control Voltage Output	Control voltage buffer output input to Pin7	_	<u> </u>
9	NC		_	
10	Volume Mode/Balance Mode Switching	Control mode switching pin Low – independent volume control High – coalition volume balance control mode	_	(10) V _{ref} 2
11	Reference Voltage Output	Reference voltage output pin	_	
12	GND	Control system GND pin	_	
14	B-ch. GND	B-ch. side VCA system GND pin		
16	Negative Side Power Supply	Negative side supply pin	_	

Supplementary Explanation

Electrical Caracteristics Design Reference Value

Parameter	Symbol	Condition	min.	typ.	max.	Unit
Crosstalk	CT	$V_{in} = 0 dBV, V_{cont} = V_{ref}$		- 85	- 80	dBV
Control Voltage at -20dB	V_{cont1}	$V_{in} = 0 dBV, V_{out} = -20 dBV$	1.8	2	2.2	V
Attenuation Characteristics	SLO	$V_{in} = 0 dBV, V_{cont.1} \longrightarrow V_{cont.} - 0.5V$	- 15.5	- 12	- 9.5	dB
Attenuation Characteristics Balance	ATT-B	$V_{in} = 0 dBV, V_{cont.} = V_{cont.1} \longrightarrow V_{cont.} - 0.5V$	- 1.4	0	1.4	dB
The ratio of V _{cont.1} to V _{ref}	ATT-V		0.25	0.4	0.55	dB
Control Power Supply	V_{ref}		4.8	5	5.2	V

Operation Mode and Control Pin

	Pin No.	Volume Mode	Balance Mode	
	5	Volume Control	Volume Control	
7 Volu		Volume Control	Balance Control	

Mode	Operation Description	
Volume Mode Control each channel independently		
Balance Mode	Control volume at Pin5 simultaneously. Control right and left balance at Pin6	

Note) Center at 1/2V_{ref}

Precautions on Use

This IC is an integrated circuit for +, -2 power supply.

When user use this IC at – power supply, making reference voltage outside with OP amp. is needed.

As this IC is apt to be influenced by supply impedance, it needs capacitors of more than $47\mu F$ between V_{CC} and GND, more than $47\mu F$ between V_{EE} and GND.

Request for your special attention and precautions in using the technical information and semiconductors described in this material

- (1) An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this material and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan.
- (2) The technical information described in this material is limited to showing representative characteristics and applied circuit examples of the products. It does not constitute the warranting of industrial property, the granting of relative rights, or the granting of any license.
- (3) The products described in this material are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
 - Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - Any applications other than the standard applications intended.
- (4) The products and product specifications described in this material are subject to change without notice for reasons of modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the guaranteed values, in particular those of maximum rating, the range of operating power supply voltage and heat radiation characteristics. Otherwise, we will not be liable for any defect which may arise later in your equipment. Even when the products are used within the guaranteed values, redundant design is recommended, so that such equipment may not violate relevant laws or regulations because of the function of our products.
- (6) When using products for which dry packing is required, observe the conditions (including shelf life and after-unpacking standby time) agreed upon when specification sheets are individually exchanged.
- (7) No part of this material may be reprinted or reproduced by any means without written permission from our company.

Please read the following notes before using the datasheets

- A. These materials are intended as a reference to assist customers with the selection of Panasonic semiconductor products best suited to their applications.
 - Due to modification or other reasons, any information contained in this material, such as available product types, technical data, and so on, is subject to change without notice.
 - Customers are advised to contact our semiconductor sales office and obtain the latest information before starting precise technical research and/or purchasing activities.
- B. Panasonic is endeavoring to continually improve the quality and reliability of these materials but there is always the possibility that further rectifications will be required in the future. Therefore, Panasonic will not assume any liability for any damages arising from any errors etc. that may appear in this material.
- C. These materials are solely intended for a customer's individual use. Therefore, without the prior written approval of Panasonic, any other use such as reproducing, selling, or distributing this material to a third party, via the Internet or in any other way, is prohibited.