MCP1726 # 1A, Low Voltage, Low Quiescent Current LDO Regulator #### **Features** - 1A Output Current Capability - Input Operating Voltage Range: 2.3V to 6.0V - Adjustable Output Voltage Range: 0.8V to 5.0V - Standard Fixed Output Voltages: - 0.8V, 1.2V, 1.8V, 2.5V, 3.3V, 5.0V - Low Dropout Voltage: 220 mV Typical at 1A - Typical Output Voltage Tolerance: 0.4% - Stable with 1.0 µF Ceramic Output Capacitor - · Fast response to Load Transients - Low Supply Current: 140 μA (typ) - Low Shutdown Supply Current: 0.1 µA (typ) - Adjustable Delay on Power Good Output - Short Circuit Current Limiting and Overtemperature Protection - 3X3 DFN-8 and SOIC-8 Package Options #### **Applications** - · High-Speed Driver Chipset Power - · Networking Backplane Cards - Notebook Computers - Network Interface Cards - Palmtop Computers - 2.5V to 1.XV Regulators #### Description The MCP1726 is a 1A Low Dropout (LDO) linear regulator that provides high current and low output voltages in a very small package. The MCP1726 comes in a fixed (or adjustable) output voltage version, with an output voltage range of 0.8V to 5.0V. The 1A output current capability, combined with the low output voltage capability, make the MCP1726 a good choice for new sub-1.8V output voltage LDO applications that have high current demands. The MCP1726 is stable using ceramic output capacitors that inherently provide lower output noise and reduce the size and cost of the entire regulator solution. Only 1 μF of output capacitance is needed to stabilize the LDO. Using CMOS construction, the quiescent current consumed by the MCP1726 is typically less than 140 μ A over the entire input voltage range, making it attractive for portable computing applications that demand high output current. When shut down, the quiescent current is reduced to less than 0.1 μ A. The scaled-down output voltage is internally monitored and a power good (PWRGD) output is provided when the output is within 92% of regulation (typical). An external capacitor can be used on the C_{DELAY} pin to adjust the delay from 1 ms to 300 ms. The overtemperature and short circuit current-limiting provide additional protection for the LDO during system fault conditions. ## **Package Types** #### **Typical Application** # **Functional Block Diagram** # 1.0 ELECTRICAL CHARACTERISTICS #### **Absolute Maximum Ratings †** | V _{IN} 6.5V | |---| | Maximum Voltage on Any Pin (GND $-$ 0.3V) to (V_{DD} + 0.3)V | | Maximum Junction Temperature, T _J +150°C | | Maximum Power Dissipation Internally-Limited (Note 6) | | Storage temperature65°C to +150°C | † Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. #### **DC CHARACTERISTICS** **Electrical Specifications:** Unless otherwise noted, $V_{IN} = (V_R + 0.5V)$ or 2.3V, whichever is greater, $I_{OUT} = 1$ mA, $C_{IN} = C_{OUT} = 4.7 \ \mu F$ (X7R Ceramic), $T_A = +25 ^{\circ} C$. Boldface type applies for junction temperatures, T₁ (Note 7) of -40°C to +125°C | - Contract type applies for junction temperatures, 1 (Note 1) or -40 of to +125 or | | | | | | | | | |--|--|-------|-------|-------|--------|--|--|--| | Parameters | Sym | Min | Тур | Max | Units | Conditions | | | | Input Operating Voltage | V _{IN} | 2.3 | | 6.0 | V | Note 1 | | | | Input Quiescent Current | Iq | 1 | 140 | 220 | μA | $I_L = 0 \text{ mA}, V_{IN} = V_R +0.5V,$
$V_{OUT} = 0.8V \text{ to } 5.0V$ | | | | Input Quiescent Current for SHDN Mode | ISHDN | | 0.1 | 3 | μA | SHDN = GND | | | | Maximum Output Current | I _{OUT} | 1 | _ | _ | Α | $V_{IN} = 2.3V \text{ to } 6.0V \text{ (Note 1)}$ | | | | Line Regulation | $\Delta V_{OUT}/$ $(V_{OUT} \times \Delta V_{IN})$ | 1 | 0.05 | 0.3 | %/V | $(V_R + 0.5)V \le V_{IN} \le 6V$ | | | | Load Regulation | ΔV _{OUT} /V _{OUT} | -1.5 | ±0.5 | 1.5 | % | $I_{OUT} = 1 \text{ mA to 1A},$
$V_{IN} = (V_R + 0.6)V \text{ (Note 4)}$ | | | | Output Short Circuit Current | I _{OUT_SC} | _ | 1.7 | _ | А | $V_{IN} = (V_R + 0.5)V$,
$R_{LOAD} < 0.1\Omega$, Peak Current | | | | Adjust Pin Characteristics | • | | • | • | • | | | | | Adjust Pin Reference Voltage | V_{ADJ} | 0.402 | 0.410 | 0.418 | V | $V_{IN} = 2.3V$ to $V_{IN} = 6.0V$, $I_{OUT} = 1$ mA | | | | Adjust Pin Leakage Current | I _{ADJ} | -10 | ±0.01 | +10 | nA | $V_{IN} = 6.0V,$
$V_{ADJ} = 0V \text{ to } 6V$ | | | | Adjust Temperature Coefficient | TCV _{OUT} | _ | 40 | _ | ppm/°C | Note 3 | | | - **Note 1:** The minimum V_{IN} must meet two conditions: $V_{IN} \ge 2.3 \text{V}$ and $V_{IN} \ge (V_R + 2.5\%) + V_{DROPOUT}$. - 2: V_R is the nominal regulator output voltage for the fixed cases. $V_R = 1.2V$, 1.8V, etc. V_R is the desired set point output voltage for the adjustable cases. $V_R = V_{ADJ^*}((R_1/R_2)+1)$. Figure 4-1. - 3: $TCV_{OUT} = (V_{OUT\text{-}HIGH} V_{OUT\text{-}LOW}) *10^6 / (V_R * \Delta Temperature)$. $V_{OUT\text{-}HIGH}$ is the highest voltage measured over the temperature range. $V_{OUT\text{-}LOW}$ is the lowest voltage measured over the temperature range. - **4:** Load regulation is measured at a constant junction temperature using low duty-cycle pulse testing. Load regulation is tested over a load range from 1 mA to the maximum specified output current. - 5: Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its nominal value that was measured with an input voltage of $V_{IN} = V_R + 0.5V$. - **6:** The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air. (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained junction temperatures above 125°C can impact device reliability. - 7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the desired junction temperature. The test time is small enough such that the rise in the junction temperature over the ambient temperature is not significant. ### **DC CHARACTERISTICS (Continued)** **Electrical Specifications:** Unless otherwise noted, $V_{IN} = (V_R + 0.5V)$ or 2.3V, whichever is greater, $I_{OUT} = 1$ mA, $C_{IN} = C_{OUT} = 4.7 \ \mu F$ (X7R Ceramic), $T_A = +25^{\circ}C$. Boldface type applies for junction temperatures, T_J (Note 7) of -40°C to +125°C | Parameters | Sym | Min | Тур | Max | Units | Conditions | | | | |--|-----------------------------------|--------------------------|-------------------------|-----------------------|------------------|--|--|--|--| | Fixed-Output Characteristics | | | | | | | | | | | Voltage Regulation | V _{OUT} | V _R -
2.5% | V _R
±0.5% | V _R + 2.5% | V | Note 2 | | | | | Dropout Characteristics | | | | | | | | | | | Dropout Voltage | V _{IN} -V _{OUT} | _ | 220 | 500 | mV | $I_{OUT} = 1A, V_{IN(MIN)} = 2.3V$ (Note 5) | | | | | Power Good Characteristics | | | • | | | | | | | | Input Voltage Operating Range | V _{PWRGD_VIN} | 1.0 | _ | 6.0 | V | T _A = +25°C | | | | | for Valid PWRGD | | 1.2 | _ | 6.0 | | $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$ | | | | | | | | | | | $I_{SINK} = 100 \mu A$ | | | | | PWRGD Threshold Voltage | PWRGD_THF | 88 | 92 | 96 | % | V _{OUT} < 2.5V, Falling Edge | | | | | (Referenced to V _{OUT}) | | 89 | 92 | 95 | % | V _{OUT} > 2.5V, Falling Edge | | | | | | PWRGD_THR | 89 | 94 | 98 | % | V _{OUT} < 2.5V, Rising Edge | | | | | | | 90 | 93 | 96 | % | V _{OUT} > 2.5V, Rising Edge | | | | | PWRGD Output Voltage Low | V_{PWRGD_L} | | 0.2 | 0.4 | V | I _{PWRGD SINK} = 1.2 mA | | | | | PWRGD Leakage | P _{WRGD-LK} | | 0.1 | | μΑ | $V_{PWRGD} = V_{IN} = 6.0V$ | | | | | PWRGD Time Delay | T_{PG} | | 200 | _ | μs | C _{DELAY} = OPEN | | | | | | | 10 | 30 | 55 | ms | $C_{DELAY} = 0.01 \mu F$ | | | | | | | | 300 | _ | ms | $C_{DELAY} = 0.1 \mu F$ | | | | | Detect Threshold to PWRGD
Active Time Delay | T _{VDET-PWRGD} | | 170 | | μs | | | | | | Shutdown Input | | | | | | | | | | | Logic-High Input | V _{SHDN-HIGH} | 45 | | | %V _{IN} | V _{IN} = 2.3V to 6.0V | | | | | Logic-Low Input | V _{SHDN-Low} | | | 15 | %V _{IN} | $V_{IN} = 2.3V \text{ to } 6.0V$ | | | | | SHDN Input Leakage Current | SHDN _{ILK} | -0.1 | ±0.001 | +0.1 | μA | $V_{IN} = 6V$, $\overline{SHDN} = V_{IN}$, $\overline{SHDN} = GND$ | | | | - **Note 1:** The minimum V_{IN} must meet two conditions: $V_{IN} \ge 2.3 \text{V}$ and $V_{IN} \ge (V_R + 2.5\%) + V_{DROPOUT}$. - 2: V_R is the nominal regulator output voltage for the fixed cases. $V_R = 1.2V$, 1.8V, etc. V_R is the desired set point output voltage for the adjustable cases. $V_R = V_{ADJ^*}((R_1/R_2)+1)$. Figure 4-1. - 3: TCV_{OUT} = (V_{OUT-HIGH} V_{OUT-LOW}) *10⁶ / (V_R * Δ Temperature). V_{OUT-HIGH} is the highest voltage measured over the temperature range. V_{OUT-LOW} is the lowest voltage measured over the temperature range. - **4:** Load regulation is measured at a constant junction temperature using low duty-cycle pulse testing. Load regulation is tested over a load range from 1 mA to the maximum specified output current. - 5: Dropout voltage is defined as the input-to-output voltage differential at which the output voltage
drops 2% below its nominal value that was measured with an input voltage of V_{IN} = V_R + 0.5V. - 6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air. (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained junction temperatures above 125°C can impact device reliability. - 7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the desired junction temperature. The test time is small enough such that the rise in the junction temperature over the ambient temperature is not significant. #### DC CHARACTERISTICS (Continued) **Electrical Specifications:** Unless otherwise noted, $V_{IN} = (V_R + 0.5V)$ or 2.3V, whichever is greater, $I_{OUT} = 1$ mA, $C_{IN} = C_{OUT} = 4.7 \ \mu F$ (X7R Ceramic), $T_A = +25 ^{\circ} C$. Boldface type applies for junction temperatures, T_J (Note 7) of -40°C to +125°C | Parameters | Sym | Min | Тур | Max | Units | Conditions | | | | |--|-----------------|-----|-----|-----|--------|--|--|--|--| | AC Performance | | | | | | | | | | | Output Delay From SHDN | T _{OR} | | 100 | | μs | $\overline{\text{SHDN}} = \text{GND to V}_{\text{IN}}$
V _{OUT} = GND to 95% V _R | | | | | Output Noise | e _N | _ | 2.0 | _ | μV/√Hz | I_{OUT} = 200 mA, f = 1 kHz,
C_{OUT} = 1 μ F (X7R
Ceramic), V_{OUT} = 2.5V | | | | | Power Supply Ripple Rejection
Ratio | PSRR | _ | 54 | _ | dB | $\begin{split} f &= 100 \text{ Hz, } C_{OUT} = 10 \mu\text{F,} \\ I_{OUT} &= 100 \text{ mA,} \\ V_{INAC} &= 30 \text{ mV pk-pk,} \\ C_{IN} &= 0 \mu\text{F} \end{split}$ | | | | | Thermal Shutdown Temperature | T _{SD} | _ | 150 | _ | °C | $I_{OUT} = 100 \mu A, V_{OUT} = 1.8V, V_{IN} = 2.8V$ | | | | | Thermal Shutdown Hysteresis | ΔT_SD | _ | 10 | _ | °C | $I_{OUT} = 100 \mu A, V_{OUT} = 1.8V, V_{IN} = 2.8V$ | | | | - **Note 1:** The minimum V_{IN} must meet two conditions: $V_{IN} \ge 2.3V$ and $V_{IN} \ge (V_R + 2.5\%) + V_{DROPOUT}$. - 2: V_R is the nominal regulator output voltage for the fixed cases. $V_R = 1.2V$, 1.8V, etc. V_R is the desired set point output voltage for the adjustable cases. $V_R = V_{ADJ^*}((R_1/R_2)+1)$. Figure 4-1. - 3: $TCV_{OUT} = (V_{OUT\text{-}HIGH} V_{OUT\text{-}LOW}) *10^6 / (V_R * \Delta Temperature)$. $V_{OUT\text{-}HIGH}$ is the highest voltage measured over the temperature range. $V_{OUT\text{-}LOW}$ is the lowest voltage measured over the temperature range. - **4:** Load regulation is measured at a constant junction temperature using low duty-cycle pulse testing. Load regulation is tested over a load range from 1 mA to the maximum specified output current. - 5: Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its nominal value that was measured with an input voltage of $V_{IN} = V_R + 0.5V$. - **6:** The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air. (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained junction temperatures above 125°C can impact device reliability. - 7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the desired junction temperature. The test time is small enough such that the rise in the junction temperature over the ambient temperature is not significant. ### **TEMPERATURE SPECIFICATIONS** | Electrical Specifications: Unless otherwise indicated, all limits apply for V _{IN} = 2.3V to 6.0V. | | | | | | | | |---|----------------|-----|-----|------|-------|---|--| | Parameters | Sym | Min | Тур | Max | Units | Conditions | | | Temperature Ranges | | | | | | | | | Operating Junction Temperature Range | T _J | -40 | _ | +125 | °C | Steady State | | | Maximum Junction Temperature | TJ | _ | _ | +150 | °C | Transient | | | Storage Temperature Range | T _A | -65 | _ | +150 | °C | | | | Thermal Package Resistances | | | _ | | | | | | Thermal Resistance, 8LD 3 x 3 DFN | θ_{JA} | _ | 41 | _ | °C/W | 4-Layer JC51-7
Standard Board with
vias | | | Thermal Resistance, 8LD SOIC | θ_{JA} | _ | 150 | _ | °C/W | 4-Layer JC51-7
Standard Board | | #### 2.0 TYPICAL PERFORMANCE CURVES **Note:** The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range. **FIGURE 2-1:** Quiescent Current vs. Input Voltage (1.2V Adjustable). FIGURE 2-2: Ground Current vs. Load Current (1.2V Adjustable). **FIGURE 2-3:** Quiescent Current vs. Junction Temperature (1.2V Adjustable). **FIGURE 2-4:** Line Regulation vs. Temperature (1.2V Adjustable). FIGURE 2-5: Load Regulation vs. Temperature. **FIGURE 2-6:** Adjust Pin Voltage vs. Temperature. **FIGURE 2-7:** Dropout Voltage vs. Output Current (Adjustable Version). **FIGURE 2-8:** Dropout Voltage vs. Temperature (Adjustable Version). **FIGURE 2-9:** Power Good (PWRGD) Time Delay vs. Temperature. FIGURE 2-10: Quiescent Current vs. Input Voltage (0.8V Fixed). FIGURE 2-11: Quiescent Current vs. Input Voltage (3.3V Fixed). FIGURE 2-12: Ground Current vs. Load Current. **FIGURE 2-13:** Quiescent Current vs. Temperature. FIGURE 2-14: I_{SHDN} vs. Temperature. **FIGURE 2-15:** Line Regulation vs. Temperature (0.8V Fixed) **FIGURE 2-16:** Line Regulation vs. Temperature (3.3V Fixed). FIGURE 2-17: Load Regulation vs. Temperature (V_{OUT} < 2.5V Fixed). **FIGURE 2-18:** Load Regulation vs. Temperature ($V_{OUT} \ge 2.5V$ Fixed). FIGURE 2-19: Dropout Voltage vs. Load Current. **FIGURE 2-20:** Dropout Voltage vs. Temperature. **FIGURE 2-21:** Short Circuit Current vs. Input Voltage. **FIGURE 2-22:** Output Noise Voltage Density vs. Frequency. **FIGURE 2-23:** Power Supply Ripple Rejection (PSRR) vs. Frequency ($V_{OUT} = 1.2V$ Adj.). **FIGURE 2-24:** Power Supply Ripple Rejection (PSRR) vs. Frequency ($V_{OUT} = 1.2V$ Adj.). **FIGURE 2-25:** Power Supply Ripple Rejection (PSRR) vs. Frequency ($V_{OUT} = 2.5V$ Fixed). **FIGURE 2-26:** Power Supply Ripple Rejection (PSRR) vs. Frequency ($V_{OUT} = 2.5V$ Fixed). **FIGURE 2-27:** 2.5V (Adj.) Startup from V_{IN} . **FIGURE 2-28:** 2.5V (Adj.) Startup from Shutdown. **FIGURE 2-29:** Power Good (PWRGD) Timing with C_{BYPASS} of 1000 pF. **FIGURE 2-30:** Power Good (PWRGD) Timing with C_{BYPASS} of 0.01 μ F. FIGURE 2-31: Dynamic Line Response (1.2V Fixed). FIGURE 2-32: Dynamic Line Response (2.5V Fixed). FIGURE 2-33: Dynamic Load Response (2.5V Fixed, 10 mA to 1000 mA). FIGURE 2-34: Dynamic Load Response (2.5V Fixed, 100 mA to 1000 mA). #### 3.0 PIN DESCRIPTION The descriptions of the pins are listed in Table 3-1. TABLE 3-1: PIN FUNCTION TABLE | Pin No.
Fixed Output | Pin No.
Adjustable
Output | Name | Description | |-------------------------|---------------------------------|--------------------|---| | 1 | 1 | V _{IN} | Input Voltage Supply | | 2 | 2 | V_{IN} | Input Voltage Supply | | 3 | 3 | SHDN | Shutdown Control Input (active-low) | | 4 | 4 | GND | Ground | | 5 | 5 | PWRGD | Power Good Output | | 6 | 6 | C _{DELAY} | Power Good Delay Set-Point Input | | _ | 7 | ADJ | Output Voltage Sense Input (adjustable version) | | 7 | | V _{OUT} | Regulated Output Voltage | | 8 | 8 | V _{OUT} | Regulated Output Voltage | | Exposed Pad | Exposed Pad | EP | Exposed Pad of the DFN Package | ### 3.1 Input Voltage Supply (V_{IN}) Connect the unregulated or regulated input voltage source to V_{IN} . If the input voltage source is located several inches away from the LDO, or the input source is a battery, it is recommended that an input capacitor be used. A typical input capacitance value of 1 μF to 10 μF should be sufficient for most applications. # 3.2 Shutdown Control Input (SHDN) The \overline{SHDN} input is used to turn the LDO output voltage on and off. When the \overline{SHDN} input is at a logic-high level, the LDO output voltage is enabled. When the \overline{SHDN} input is pulled to a logic-low level, the LDO output voltage is disabled. When the \overline{SHDN} input is pulled low, the PWRGD output also goes low and the LDO enters a low quiescent current shutdown state where the typical quiescent current is 0.1 μ A. #### 3.3 Ground (GND) Connect the GND pin of the LDO to a quiet circuit ground. This will help the LDO power supply rejection ratio and noise performance. The ground pin of the LDO only conducts the quiescent current of the LDO (typically 140 μ A), so a heavy trace is not required. #### 3.4 Power Good Output (PWRGD) The PWRGD output is an open-drain output used to indicate when the LDO output voltage is within 92% (typically) of its nominal regulation value. The PWRGD output has a typical hysteresis value of 2% for the adjustable voltage version and for voltage outputs less than 2.5V. For fixed output voltage versions greater than 2.5V, the hysteresis is 0.7%. The PWRGD output is delayed on power-up by 200
μs (typical, no capacitance on $C_{\mbox{\scriptsize DELAY}}$ pin). This delay time is controlled by the $C_{\mbox{\scriptsize DELAY}}$ pin. # 3.5 Power Good Delay Set-Point Input (C_{DFI AY}) The C_{DELAY} input sets the power-up delay time for the PWRGD output. By connecting an external capacitor from the C_{DELAY} pin to ground, the delay times for the PWRGD output can be adjusted from 200 μ s (no capacitance) to 300 ms (0.1 μ F capacitor). This allows for the optimal setting of the system reset time. #### 3.6 Output Voltage Sense Input (ADJ) The output voltage adjust pin (ADJ) for the adjustable output voltage version of the MCP1726 allows the user to set the output voltage of the LDO by using two external resistors. The adjust pin voltage is 0.41V (typical). ### 3.7 Regulated Output Voltage (V_{OUT}) The V_{OUT} pin(s) is the regulated output voltage of the LDO. A minimum output capacitance of 1.0 μF is required for LDO stability. The MCP1726 is stable with ceramic, tantalum and aluminum-electrolytic capacitors. See **Section 4.3 "Output Capacitor"** for output capacitor selection guidance. #### 3.8 Exposed Pad (EP) The 3X3 DFN package has an exposed pad on the bottom of the package. This pad should be soldered to the Printed Circuit Board (PCB) to aid in the removal of heat from the package during operation. The exposed pad is at the ground potential of the LDO. #### 4.0 DEVICE OVERVIEW The MCP1726 is a high output current, Low Dropout (LDO) voltage regulator with an adjustable delay power-good output and shutdown control input. The low dropout voltage of 220 mV at 1A of current makes it ideal for battery-powered applications. Unlike other high output current LDOs, the MCP1726 only draws 220 µA of quiescent current at full load. #### 4.1 LDO Output Voltage The MCP1726 LDO is available with either a fixed output voltage or an adjustable output voltage. The output voltage range is 0.8V to 5.5V for both versions. #### 4.1.1 ADJUST INPUT The adjustable version of the MCP1726 uses the ADJ pin (pin 7) to get the output voltage feedback for output voltage regulation. This allows the user to set the output voltage of the device with two external resistors. The nominal voltage for ADJ is 0.41V. Figure 4-1 shows the adjustable version of the MCP1726. Resistors R_1 and R_2 form the resistor divider network necessary to set the output voltage. With this configuration, the equation for setting V_{OUT} is: #### **EQUATION 4-1:** $$V_{OUT} = V_{ADJ} \left(\frac{R_1 + R_2}{R_2} \right)$$ V_{OUT} = LDO Output Voltage V_{ADJ} = ADJ Pin Voltage (typically 0.41V) **FIGURE 4-1:** Typical adjustable output voltage application circuit. The allowable resistance value range for resistor R_2 is from 10 k Ω to 200 k Ω . Solving the equation for R_1 yields the following equation: #### **EQUATION 4-2:** $$R_1 = R_2 \left(\frac{V_{OUT} - V_{ADJ}}{V_{ADJ}} \right)$$ V_{OUT} = LDO Output Voltage $V_{ADJ} = ADJ Pin Voltage (typically 0.41V)$ # 4.2 Output Current and Current Limiting The MCP1726 LDO is tested and ensured to supply a minimum of 1A of output current. The MCP1726 has no minimum output load, so the output load current can go to 0 mA and the LDO will continue to regulate the output voltage to within tolerance. The MCP1726 also incorporates an output current limit. If the output voltage falls below 0.7V due to an overload condition (usually represents a shorted load condition), the output current is limited to 1.7A (typical). If the overload condition is a soft overload, the MCP1726 will supply higher load currents of up to 3A. The MCP1726 should not be operated in this condition continuously as it may result in failure of the device. However, this does allow for device usage in applications that have higher pulsed load currents having an average output current value of 1A or less. Output overload conditions may also result in an overtemperature shutdown of the device. If the junction temperature rises above 150°C, the LDO will shut down the output voltage. See **Section 4.9 "Overtemperature Protection"** for more information on overtemperature shutdown. #### 4.3 Output Capacitor The MCP1726 requires a minimum output capacitance of 1 μ F for output voltage stability. Ceramic capacitors are recommended because of their size, cost and environmental robustness qualities. Aluminum-electrolytic and tantalum capacitors can be used on the LDO output as well. The Equivalent Series Resistance (ESR) of the electrolytic output capacitor must be no greater than 2 ohms. The output capacitor should be located as close to the LDO output as is practical. Ceramic materials X7R and X5R have low temperature coefficients and are well within the acceptable ESR range required. A typical 1 μF X7R 0805 capacitor has an ESR of 50 milli-ohms. Larger LDO output capacitors can be used with the MCP1726 to improve dynamic performance and power supply ripple rejection performance. A maximum of $22~\mu F$ is recommended. Aluminum-electrolytic capacitors are not recommended for low-temperature applications of < -25°C. #### 4.4 Input Capacitor Low input source impedance is necessary for the LDO output to operate properly. When operating from batteries, or in applications with long lead length (> 10 inches) between the input source and the LDO, some input capacitance is recommended. A minimum of 1.0 μF to 4.7 μF is recommended for most applications. For applications that have output step load requirements, the input capacitance of the LDO is very important. The input capacitance provides the LDO with a good local low-impedance source to pull the transient currents from in order to respond quickly to the output load step. For good step response performance, the input capacitor should be of equivalent (or higher) value than the output capacitor. The capacitor should be placed as close to the input of the LDO as is practical. Larger input capacitors will also help reduce any high-frequency noise on the input and output of the LDO and reduce the effects of any inductance that exists between the input source voltage and the input capacitance of the LDO. #### 4.5 Power Good Output (PWRGD) The PWRGD output is used to indicate when the output voltage of the LDO is within 92% (typical value, see the Electrical Characteristics table for Min/Max specs) of its nominal regulation value. As the output voltage of the LDO rises, the PWRGD output will be held low until the output voltage has exceeded the power good threshold plus the hysteresis value. Once this threshold has been exceeded, the power good time delay is started (shown as T_{PG} in the Electrical Characteristics table). The power good time delay is adjustable via the C_{DELAY} pin of the LDO (see **Section 4.6 "C_{DELAY} Input"**). By placing a capacitor from the C_{DELAY} pin to ground, the power good time delay can be adjusted from 200 μ s (no capacitance) to 300 ms (0.1 μ F capacitor). After the time delay period, the PWRGD output will go high, indicating that the output voltage is stable and within regulation limits. If the output voltage of the LDO falls below the power good threshold, the power good output will transition low. The power good circuitry has a 170 µs delay when detecting a falling output voltage, which helps to increase noise immunity of the power good output and avoid false triggering of the power good output during fast output transients. See Figure 4-2 for power good timing characteristics. When the LDO is put into Shutdown mode using the SHDN input, the power good output is pulled low immediately, indicating that the output voltage will be out of regulation. The timing diagram for the power good output when using the shutdown input is shown in Figure 4-3. The power good output is an open-drain output that can be pulled up to any voltage that is equal to or less than the LDO input voltage. This output is capable of sinking 1.2 mA (V_{PWRGD} < 0.4V maximum). FIGURE 4-2: Power Good Timing. **FIGURE 4-3:** Power Good Timing from Shutdown. ### 4.6 C_{DELAY} Input The C_{DELAY} input is used to provide the power-up delay timing for the power good output, as discussed in the previous section. By adding a capacitor from the C_{DELAY} pin to ground, the PWRGD power-up time delay can be adjusted from 200 μ s (no capacitance on C_{DELAY}) to 300 ms (0.1 μ F of capacitance on C_{DELAY}). See the Electrical Characteristics table for C_{DELAY} timing tolerances. Once the power good threshold (rising) has been reached, the $C_{\rm DELAY}$ pin charges the external capacitor to 1.5V (typical, this level can vary between 1.4V and 1.75V across the input voltage range of the part). The PWRGD output will transition high when the $C_{\rm DELAY}$ pin voltage has charged to 0.42V. If the output falls below the power good threshold limit during the charging time between 0.0V and 0.42V on the $C_{\rm DELAY}$ pin, the $C_{\rm DELAY}$ pin voltage will be pulled to ground, thus resetting the timer. The $C_{\rm DELAY}$ pin will be held low until the output voltage of the LDO has once again risen above the power good rising threshold. A timing diagram showing $C_{\rm DELAY}$, PWRGD and $V_{\rm OUT}$ is shown in Figure 4-4. **FIGURE 4-4:** C_{DELAY} and PWRGD Timing Diagram. # 4.7 Shutdown Input (SHDN) The \overline{SHDN} input is an active-low input signal that turns the LDO on and off. The \overline{SHDN} threshold is a percentage of the input voltage. The typical value of this shutdown threshold is 30% of V_{IN} , with minimum and maximum limits over the entire operating temperature range of 45% and 15%, respectively. The SHDN input will ignore low-going pulses (pulses meant to shut down the LDO) that are up to 400 ns in pulse width. If the shutdown input is pulled low for more than 400 ns, the LDO will enter Shutdown mode. This small bit of filtering helps to reject any system noise spikes on the shutdown
input signal. On the rising edge of the \overline{SHDN} input, the shutdown circuitry has a 30 µs delay before allowing the LDO output to turn on. This delay helps to reject any false turn-on signals or noise on the \overline{SHDN} input signal. After the 30 µs delay, the LDO output enters its soft-start period as it rises from 0V to its final regulation value. If the \overline{SHDN} input signal is pulled low during the 30 µs delay period, the timer will be reset and the delay time will start over again on the next rising edge of the \overline{SHDN} input. The total time from the \overline{SHDN} input going high (turn-on) to the LDO output being in regulation is typically 100 μ s. See Figure 4-5 for a timing diagram of the SHDN input. FIGURE 4-5: Shutdown Input Timing Diagram. # 4.8 Dropout Voltage and Undervoltage Lockout Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below the nominal value that was measured with a $V_R + 0.5V$ differential applied. The MCP1726 LDO has a very low dropout voltage specification of 220 mV (typical) at 1A of output current. See the Electrical Characteristics table for maximum dropout voltage specifications. The MCP1726 LDO operates across an input voltage range of 2.3V to 6.0V and incorporates input Undervoltage Lockout (UVLO) circuitry that keeps the LDO output voltage off until the input voltage reaches a minimum of 2.18V (typical) on the rising edge of the input voltage. As the input voltage falls, the LDO output will remain on until the input voltage level reaches 2.04V (typical). Since the MCP1726 LDO undervoltage lockout activates at 2.04V as the input voltage is falling, the dropout voltage specification does not apply for output voltages that are less than 1.9V. For high-current applications, voltage drops across the PCB traces must be taken into account. The trace resistances can cause significant voltage drops between the input voltage source and the LDO. For applications with input voltages near 2.3V, these PCB trace voltage drops can sometimes lower the input voltage enough to trigger a shutdown due to undervoltage lockout. ### 4.9 Overtemperature Protection The MCP1726 LDO has temperature-sensing circuitry to prevent the junction temperature from exceeding approximately 150°C. If the LDO junction temperature does reach 150°C, the LDO output will be turned off until the junction temperature cools to approximately 140°C, at which point the LDO output will automatically resume normal operation. If the internal power dissipation continues to be excessive, the device will again shut off. The junction temperature of the die is a function of power dissipation, ambient temperature and package thermal resistance. See **Section 5.0** "Application Circuits/Issues" for more information on LDO power dissipation and junction temperature. # 5.0 APPLICATION CIRCUITS/ISSUES ### 5.1 Typical Application The MCP1726 is used for applications that require high LDO output current and a power good output. FIGURE 5-1: Typical Application Circuit. #### 5.1.1 APPLICATION CONDITIONS Package Type = 3X3DFN8 Input Voltage Range = 3.3V ± 10% V_{IN} maximum = 3.63V V_{IN} minimum = 2.97V V_{OUT} typical = 2.5V $I_{OLIT} = 1.0A$ maximum #### 5.2 Power Calculations #### 5.2.1 POWER DISSIPATION The internal power dissipation within the MCP1726 is a function of input voltage, output voltage, output current and quiescent current. The following equation can be used to calculate the internal power dissipation for the LDO. #### **EQUATION 5-1:** $$P_{LDO} = (V_{IN(MAX)}) - V_{OUT(MIN)}) \times I_{OUT(MAX)}$$ P_{LDO} = LDO Pass device internal power dissipation V_{IN(MAX)}= Maximum input voltage V_{OUT(MIN)} = LDO minimum output voltage In addition to the LDO pass element power dissipation, there is power dissipation within the MCP1726 as a result of quiescent or ground current. The power dissipation as a result of the ground current can be calculated using the following equation: #### **EQUATION 5-2:** $$P_{I(GND)} = V_{IN(MAX)} \times I_{VIN}$$ P_{I(GND)} = Power dissipation due to the quiescent current of the LDO V_{IN(MAX)} = Maximum input voltage I_{VIN} = Current flowing in the V_{IN} pin with no LDO output current (LDO quiescent current) The total power dissipated within the MCP1726 is the sum of the power dissipated in the LDO pass device and the P(I_{GND}) term. Because of the CMOS construction, the typical I_{GND} for the MCP1726 is 140 μ A. Operating at a maximum of 3.63V results in a power dissipation of 0.51 milli-Watts. For most applications, this is small compared to the LDO pass device power dissipation and can be neglected. The maximum continuous operating junction temperature specified for the MCP1726 is +125°C. To estimate the internal junction temperature of the MCP1726, the total internal power dissipation is multiplied by the thermal resistance from junction to ambient (R θ_{JA}) of the device. The thermal resistance from junction to ambient for the 3X3DFN package is estimated at 41° C/W. #### **EQUATION 5-3:** $$T_{I(MAX)} = P_{TOTAL} \times R\theta_{IA} + T_{AMAX}$$ $T_{J(MAX)}$ = Maximum continuous junction temperature P_{TOTAL} = Total device power dissipation $R\theta_{JA}$ = Thermal resistance from junction to ambient T_{AMAX} = Maximum ambient temperature The maximum power dissipation capability for a package can be calculated given the junction-to-ambient thermal resistance and the maximum ambient temperature for the application. The following equation can be used to determine the package maximum internal power dissipation. #### **EQUATION 5-4:** $$P_{D(MAX)} = \frac{(T_{J(MAX)} - T_{A(MAX)})}{R\theta_{JA}}$$ $P_{D(MAX)}$ = Maximum device power dissipation $T_{J(MAX)}$ = maximum continuous junction temperature $T_{A(MAX)}$ = maximum ambient temperature $R\theta_{JA}$ = Thermal resistance from junction to ambient #### **EQUATION 5-5:** $$T_{J(RISE)} = P_{D(MAX)} \times R\theta_{JA}$$ $T_{J(RISE)}$ = Rise in device junction temperature over the ambient temperature $P_{D(MAX)}$ = Maximum device power dissipation $R\theta_{JA}$ = Thermal resistance from junction to ambient #### **EQUATION 5-6:** $$T_I = T_{I(RISE)} + T_A$$ $T_{,l}$ = Junction temperature $T_{J(RISE)}$ = Rise in device junction temperature over the ambient temperature T_A = Ambient temperature #### 5.3 Typical Application Internal power dissipation, junction temperature rise, junction temperature and maximum power dissipation is calculated in the following example. The power dissipation as a result of ground current is small enough to be neglected. #### 5.3.1 POWER DISSIPATION EXAMPLE #### **Package** Package Type = 3X3DFN Input Voltage $V_{IN} = 3.3V \pm 10\%$ #### **LDO Output Voltage and Current** $V_{OUT} = 2.5V$ $I_{OLIT} = 1.0A$ #### **Maximum Ambient Temperature** $T_{A(MAX)} = 70^{\circ}C$ #### **Internal Power Dissipation** $P_{LDO(MAX)} = (V_{IN(MAX)} - V_{OUT(MIN)}) \times I_{OUT(MAX)}$ $P_{LDO} = (3.3V \times 1.1) - (0.975 \times 2.5V))$ x 1.0A $P_{LDO} = 1.192 \text{ Watts}$ ### **Device Junction Temperature Rise** The internal junction temperature rise is a function of internal power dissipation and the thermal resistance from junction to ambient for the application. The thermal resistance from junction to ambient $(R\theta_{1\Delta})$ is derived from an EIA/JEDEC standard for measuring thermal resistance for small surface-mount packages. The EIA/JEDEC specification is JESD51-7 "High Effective Thermal Conductivity Test Board for Leaded Surface-Mount Packages". The standard describes the test method and board specifications for measuring the thermal resistance from junction to ambient. The actual thermal resistance for a particular application can vary depending on many factors such as copper area and thickness. Refer to AN792, "A Method to Determine How Much Power a SOT23 Can Dissipate in an Application" (DS00792), for more information regarding this subject. $T_{J(RISE)} = P_{TOTAL} x R\theta_{JA}$ $T_{JRISE} = 1.192 \text{ W x } 41.0^{\circ} \text{ C/W}$ $T_{JRISE} = 48.8^{\circ}C$ #### **Junction Temperature Estimate** To estimate the internal junction temperature, the calculated temperature rise is added to the ambient or offset temperature. For this example, the worst-case junction temperature is estimated below: $$T_J = T_{JRISE} + T_{A(MAX)}$$ $T_J = 48.8^{\circ}C + 70.0^{\circ}C$ $T_J = 118.8^{\circ}C$ As you can see from the result, this application will be operating very near the maximum operating junction temperature of 125°C. The PCB layout for this application is very important as it has a significant impact on the junction-to-ambient thermal resistance (R θ_{JA}) of the 3X3 DFN package, which is very important in this application. # Maximum Package Power Dissipation at 70°C Ambient Temperature ``` \begin{array}{l} {\rm 3X3DFN~(41^{\circ}~C/W~R\theta_{JA})} \\ {\rm P_{D(MAX)} = ~(125^{\circ}C - 70^{\circ}C) \, / \, 41^{\circ}~C/W} \\ {\rm P_{D(MAX)} = ~1.34W} \\ {\rm SOIC8~(150^{\circ}C/Watt~R\theta_{JA})} \\ {\rm P_{D(MAX)} = ~(125^{\circ}C - 70^{\circ}C) / \, 150^{\circ}~C/W} \\ {\rm P_{D(MAX)} = ~0.366W} \end{array} ``` From this table you can see the difference in maximum allowable power dissipation between the 3X3 DFN package and the 8-pin SOIC package. This difference is due to the exposed metal tab on the bottom of the DFN package. The exposed tab of the DFN package provides a very good thermal path from the die of the LDO to the PCB. The PCB then acts like a heatsink, providing more area to distribute the heat generated by the LDO. #### 6.0 PACKAGING INFORMATION ### 6.1 Package Marking Information 8-Lead DFN (3X3) | Voltage
Option | Code | |-------------------|------| | V8.0 | CAAA | | 1.2V | CAAB | | 1.8V | CAAC | | 2.5V | CAAD | | 3.3V | CAAE | | 5.0V | CAAF | | Adj | AADJ | | ·- | • | Example: 8-Lead SOIC (150 mil) Example: Legend: XX...X Customer-specific information
Y Year code (last digit of calendar year) YY Year code (last 2 digits of calendar year) WW Week code (week of January 1 is week '01') NNN Alphanumeric traceability code e3 Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (@3) can be found on the outer packaging for this package. **Note**: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. ### 8-Lead Plastic Dual Flat No Lead Package (MF) 3x3x0.9 mm Body (DFN) - Saw Singulated | | Units | INCHES | | | М | + | | |-----------------------------|-------|--------|-----------|------|-----------|----------|------| | Dimension Lim | nits | MIN | NOM | MAX | MIN | NOM | MAX | | Number of Pins | n | | 8 | | | 8 | | | Pitch | р | | .026 BSC | | | 0.65 BSC | | | Overall Height | Α | .031 | .035 | .039 | 0.80 | 0.90 | 1.00 | | Standoff | A1 | .000 | .001 | .002 | 0.00 | 0.02 | 0.05 | | Contact Thickness | A3 | | .008 REF. | | 0.20 REF. | | | | Overall Length | Е | | .118 BSC | | 3.00 BSC | | | | Exposed Pad Width (Note 3) | E2 | .055 | - | .069 | 1.40 | - | 1.75 | | Overall Width | D | | .118 BSC | | | 3.00 BSC | | | Exposed Pad Length (Note 3) | D2 | .085 | - | .096 | 2.15 | - | 2.45 | | Contact Width | b | .009 | .012 | .015 | 0.23 | 0.30 | 0.37 | | Contact Length | L | .008 | .016 | .020 | 0.20 | 0.40 | 0.50 | #### *Controlling Parameter #### Notes: - 1. Package may have one or more exposed tie bars at ends. - 2. Pin 1 visual index feature may vary, but must be located within the hatched area. - 3. Exposed pad dimensions vary with paddle size. - 4. JEDEC equivalent: MO-229 Drawing No. C04-062 Revised 03/11/05 # 8-Lead Plastic Small Outline (SN) - Narrow, 150 mil Body (SOIC) | | Units | its INCHES* | | | MILLIMETERS | | | | |--------------------------|--------|-------------|------|------|-------------|------|------|--| | Dimension | Limits | MIN | MOM | MAX | MIN | NOM | MAX | | | Number of Pins | n | ·- | 8 | | | 8 | | | | Pitch | р | | .050 | | | 1.27 | | | | Overall Height | Α | .053 | .061 | .069 | 1.35 | 1.55 | 1.75 | | | Molded Package Thickness | A2 | .052 | .056 | .061 | 1.32 | 1.42 | 1.55 | | | Standoff § | A1 | .004 | .007 | .010 | 0.10 | 0.18 | 0.25 | | | Overall Width | Е | .228 | .237 | .244 | 5.79 | 6.02 | 6.20 | | | Molded Package Width | E1 | .146 | .154 | .157 | 3.71 | 3.91 | 3.99 | | | Overall Length | D | .189 | .193 | .197 | 4.80 | 4.90 | 5.00 | | | Chamfer Distance | h | .010 | .015 | .020 | 0.25 | 0.38 | 0.51 | | | Foot Length | L | .019 | .025 | .030 | 0.48 | 0.62 | 0.76 | | | Foot Angle | ф | 0 | 4 | 8 | 0 | 4 | 8 | | | Lead Thickness | С | .008 | .009 | .010 | 0.20 | 0.23 | 0.25 | | | Lead Width | В | .013 | .017 | .020 | 0.33 | 0.42 | 0.51 | | | Mold Draft Angle Top | α | 0 | 12 | 15 | 0 | 12 | 15 | | | Mold Draft Angle Bottom | β | 0 | 12 | 15 | 0 | 12 | 15 | | Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-012 Drawing No. C04-057 ^{*} Controlling Parameter § Significant Characteristic # **MCP1726** NOTES: ### **APPENDIX A: REVISION HISTORY** # Revision B (March 2005) - Replaced 3x3 DFN package diagram. - Emphasized (bolded) a few specifications of Section 1.0 "Electrical Characteristics" in the DC Characteristics table. # **Revision A (February 2005)** Original Release of this Document. # **MCP1726** NOTES: # PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. | PART NO. X | <u>-xxx</u> x x xx | Examples: | |-------------------|--|--| | Device Tape | O.14m.14 | a) MCP1726-0802E/MF: 0.8V, 1A LDO,
8LD DFN Pkg. | | Reel | Output Range | b) MCP1726-1202E/SN: 1.20V, 1A LDO,
8LD SOIC Pkg. | | Device | MCP1726:1A, Low Quiescent Current LDO Regulator | c) MCP1726T-1802E/MF:Tape and Reel, 1.80V,
1A LDO, 8LD DFN Pkg. | | Tape & Reel | T = Tape and Reel
Blank = Tube | d) MCP1726-2502E/SN: 2.50V, 1A LDO,
8LD SOIC Pkg. | | Standard Output | 080 = 0.80V | e) MCP1726T-3302E/MF:Tape and Reel, 3.30V,
1A LDO, 8LD DFN Pkg. | | Voltage * | 120 = 1.20V
180 = 1.80V | f) MCP1726-5002E/SN: 5.00V, 1A LDO,
8LD SOIC Pkg. | | | 250 = 2.50V
330 = 3.30V
500 = 5.00V
ADJ = Adjustable Voltage Version | g) MCP1726-ADJE/MF: Adjustable, , 1A LDO,
8LD DFN Pkg. | | | * Custom output voltages available upon request. Contact your local Microchip sales office for more information. | | | Tolerance | 2 = 2.0% | | | Temperature Range | E = -40°C to +125°C | | | Package * | SN = Plastic SOIC, (150 mil Body) 8-Lead MF = Plastic Dual Flat No Lead, 3x3 mm Body (DFN), 8-Lead *Both packages are Lead Free. | | | | | | # **MCP1726** NOTES: #### Note the following details of the code protection feature on Microchip devices: - Microchip products meet the specification contained in their particular Microchip Data Sheet. - Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. - There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. - Microchip is willing to work with the customer who is concerned about the integrity of their code. - Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. #### **Trademarks** The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2005, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. # QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002 Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company's quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified. # WORLDWIDE SALES AND SERVICE #### **AMERICAS** **Corporate Office** 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com Atlanta Alpharetta, GA Tel: 770-640-0034 Fax: 770-640-0307 **Boston** Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 **Dallas** Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260 Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 San Jose Mountain View, CA Tel: 650-215-1444 Fax: 650-961-0286 **Toronto** Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509 #### ASIA/PACIFIC Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China -
Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104 China - Chengdu Tel: 86-28-8676-6200 Fax: 86-28-8676-6599 China - Fuzhou Tel: 86-591-8750-3506 Fax: 86-591-8750-3521 China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431 **China - Shanghai** Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760 China - Shunde Tel: 86-757-2839-5507 Fax: 86-757-2839-5571 China - Qingdao Tel: 86-532-502-7355 Fax: 86-532-502-7205 #### ASIA/PACIFIC India - Bangalore Tel: 91-80-2229-0061 Fax: 91-80-2229-0062 India - New Delhi Tel: 91-11-5160-8631 Fax: 91-11-5160-8632 Japan - Kanagawa Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 **Singapore** Tel: 65-6334-8870 Fax: 65-6334-8850 **Taiwan - Kaohsiung** Tel: 886-7-536-4818 Fax: 886-7-536-4803 Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102 Taiwan - Hsinchu Tel: 886-3-572-9526 Fax: 886-3-572-6459 #### **EUROPE** Austria - Weis Tel: 43-7242-2244-399 Fax: 43-7242-2244-393 **Denmark - Ballerup** Tel: 45-4450-2828 Fax: 45-4450-2828 France - Massy Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany - Ismaning Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 England - Berkshire Tel: 44-118-921-5869 Fax: 44-118-921-5820