TOSHIBA PHOTOCOUPLER GaAs IRED + PHOTO-TRIAC

TLP165J

TRIAC DRIVE

PROGRAMMABLE CONTROLLERS

AC-OUTPUT MODULE

SOLID STATE RELAY

The TOSHIBA MINI FLAT COUPLER TLP165J is a small outline coupler, suitable for surface mount assembly.

The TLP165J consists of a photo triac, optically coupled to a gallium arsenide infrared emitting diode.

Peak Off-State Voltage: 600V (MIN.)

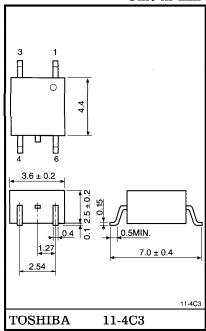
Trigger LED Current : 10mA (MAX.)

On-State Current : 70mA (MAX.)

Isolation Voltage : 2500Vrms (MIN.)

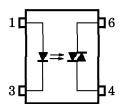
UL Recognized : UL1577, File No. E67349

Option (V4) type


VDE Approved : VDE 0884 Satisfied

Maximum Operating Insulation Voltage: 565Vpk Highest Permissible Over Voltage : 4000Vpk

TRIGGER LED CURRENT


TYPE (Note 1)	TRIGGER LED	MARKING OF CLASSIFICATION	
	$V_{T}=6V$,		
(Note 1)	Min.	Max.	CLASSIFICATION
(IFT7)	_	7	T 7
None	_	10	T7, blank

Unit in mm

Weight: 0.09g

PIN CONFIGURATIONS

- 1. ANODE
- 3. CATHODE
- 4. TERMINAL 1
- 6. TERMINAL 2

Exp. Rank IFT7: TLP165J (IFT7)

(Note 1) Application type name for certification test, please use standard product type name, i.e.

TLP165J (IFT7): TLP165J

- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

 Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.

 The products described in this document are subject to foreign exchange and foreign trade control laws.

 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

 The information contained herein is subject to change without notice.

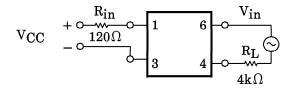
MAXIMUM RATINGS (Ta = 25°C)

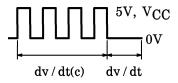
CHARACTERISTIC			SYMBOL	RATING	UNIT
	Forward Current	${ m I_F}$	50	mA	
	Forward Current Derating (Ta≥53°C)	⊿ I _F /°C	-0.7	mA/°C	
LED	Peak Forward Current (100 µs pulse,	100pps)	I_{FP}	1	A
_	Reverse Voltage	v_{R}	5	V	
	Junction Temperature	$T_{ m j}$	125	°C	
	Off-State Output Terminal Voltage	$v_{ m DRM}$	600	V	
دم ا	On-State RMS Current	$Ta = 25^{\circ}C$	IT (RMS)	70	mA
CTOR		$Ta = 70^{\circ}C$		40	
CI	On-State Current Derating (Ta≥25°C	△I _T /°C	-0.67	mA/°C	
TE	Peak On-State Current (100 µs pulse,	$_{ m ITP}$	2	Α	
DETE	Peak Nonrepetitive Surge Current	I _{TSM}	1.2	A	
	(PW = 10ms, DC = 10%)		1,2		
	Junction Temperature	T_{j}	115	$^{\circ}\mathrm{C}$	
Storage Temperature Range			$ m T_{stg}$	-55~125	°C
Operating Temperature Range			$T_{ m opr}$	-40~100	°C
Lead Soldering Temperature (10s)			T_{sol}	260	°C
Isol	Isolation Voltage (AC, 1 min., R.H.≤60%) (Note 2)			2500	Vrms

(Note 2) Device considered a two terminal device: Pins 1 and 3 shorted together and 4 and 6 shorted together.

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	V_{AC}	_	_	240	Vac
Forward Current	${ m I_F}$	15	20	25	mA
Peak On-State Current	I_{TP}	_	_	1	Α
Operating Temperature	$T_{ m opr}$	-25	l	85	$^{\circ}\mathrm{C}$


ELECTRICAL CHARACTERISTICS (Ta = 25°C)


CHARACTERISTIC		SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
	Forward Voltage	$V_{\mathbf{F}}$	$I_{\mathbf{F}} = 10 \text{mA}$	1.0	1.15	1.3	V
LED	Reverse Current	$I_{ m R}$	$V_R=5V$			10	μ A
Г	Capacitance	C_{T}	V=0, f=1MHz		30	_	pF
	Peak Off-State Current	$I_{ m DRM}$	$V_{ m DRM}$ = 600 V		10	1000	nA
꼂	Peak On-State Voltage	$V_{ extbf{TM}}$	$I_{TM} = 70 \text{mA}$	_	1.7	2.8	V
TOR	Holding Current	${ m I_{H}}$	_		1.0	_	mA
DETEC	Critical Rate of Rise of Off-State Voltage	dv/dt	$V_{in} = 240 \text{Vrms}, \text{ Ta} = 85^{\circ}\text{C (Note 3)}$	_	500	_	V/μs
1	Critical Rate of Rise of Commutating Voltage	dv / dt(e)	$I_T=15mA$, $V_{in}=60Vrms$ (Note 3)		0.2	_	V/μs

COUPLED ELECTRICAL CHARACTERISTICS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Trigger LED Current	$I_{ extbf{FT}}$	$V_{T}=6V$	_		10	mA
Capacitance Input to Output	$C_{\mathbf{S}}$	$V_S=0$, $f=1MHz$	_	0.8	_	pF
Isolation Resistance	RS	$V_S = 500V, R.H. \le 60\%$	1×10^{12}	10^{14}	_	Ω
	BV_{S}	AC, 1 minute	2500	_	_	37,,,,,,
Isolation Voltage		AC, 1 second, in oil	_	5000	_	Vrms
		DC, 1 minute, in oil	_	5000		Vdc
Turn-on Time	ton	$V_D=6\rightarrow 4V, R_L=100\Omega$ $I_F=Rated I_{FT}\times 1.5$	_	_	100	μs

(Note 3) dv/dt TEST CIRCUIT

