

Current Transducer LT 10000-S

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

$I_{PN} = 10000 A$

Electrical data

$oldsymbol{I}_{PN} \ oldsymbol{I}_{P} \ oldsymbol{R}_{M}$	Primary nominal r.m.s. current Primary current, measuring range (1 s/mn) Measuring resistance		10000 0 ± 15000 R_{Mmin} R_{Mmax}		A A
М	J		_		_
	with ± 48 V	$@ \pm 10000 \text{ A}_{max}$	0	8	Ω
		@ ± 12000 A _{max}	0	1	Ω
	with ± 60 V	@ ± 10000 A max	0	20	Ω
		@ ± 15000 A max	0	1.5	Ω
I _{SN}	Secondary nominal r.m.s. current		1		Α
K _N	Conversion ratio		1:100	00	
v c	Supply voltage (± 5 %)		± 48	60	V
I _C	Current consumption		$40(@\pm60V)+I_{S} mA$		
V _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		10 ¹⁾		kV
-			1 ²⁾		kV

Accuracy - Dynamic performance data

\mathbf{X}_{G}	Overall accuracy @ I_{PN} , T_{A} = 25°C Linearity		± 0.3 < 0.1	% %
l _ο l _{οτ} t _r di/dt f	Offset current @ $\mathbf{I}_{P} = 0$, $\mathbf{T}_{A} = 25^{\circ}\mathrm{C}$ Thermal drift of \mathbf{I}_{O} Response time ³⁾ @ 90 % of $\mathbf{I}_{P \text{ max}}$ di/dt accurately followed Frequency bandwidth (-1 dB)	- 25°C + 70°C	Typ ± 0.6 < 1	

General data

Ambient operating temperature	- 25 + 70	°C
Ambient storage temperature	- 40 + 85	°C
Secondary coil resistance @ T _A = 70°C	35	Ω
Mass	17	kg
Standards 4)	EN 50178	
	Secondary coil resistance @ T _A = 70°C Mass	Ambient storage temperature $-40+85$ Secondary coil resistance @ $T_A = 70$ °C 35 Mass 17

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated case.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Notes: 1) Between primary and secondary + shield

2) Between secondary and shield

3) With a di/dt of 100 A/µs

⁴⁾ A list of corresponding tests is available

980708/6

Dimensions LT 10000-S (in mm. 1 mm = 0.0394 inch)

Front view

Left view

Secondary terminals

Terminal + : supply voltage + 48 .. 60 V

Terminal M: measure Terminal 0V:0V

: supply voltage - 48 .. 60 V Terminal

Terminal E : shield

Connection

Mechanical characteristics

• General tolerance

Fastening

• Primary through-hole

· Connection of secondary Fastening torque

± 1 mm

4 holes Ø 11 mm

Ø 200 mm

M5 threaded studs

2.2 Nm or 1.62 Lb - Ft

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed
- Dynamic performances (di/dt and response time) are best with a primary bar in the center of the through-hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.