- CONTENTS -

1. Features
2. Outline dimensions
3. Package material
4. Absolute Maximum Ratings
5. Electrical Optical Characteristics
6. Ranks
7. Taping
8. Packing Struction
9. Characteristic Diagrams
10. Precautions to taken
11. Reliability
12. Precautions in use
13. Revision history sheet

1. Features

- Package : SMD Side View Type
- Yellow colored diffusion
- $2.8 \times 1.2 \times 0.8 \mathrm{~mm}(L \times W \times H)$ small size surface mount type
- Color Coordinates : $x=0.31, y=0.32$ acc. to CIE 1931, at If $=20 \mathrm{~mA}$
- Viewing angle : extremely wide(110°)
- Technology : InGaN
- ESD Class(Mil Std-883d Methode 3015.7) based on Human Body Model(HBM) : 950V
- Soldering methods: IR reflow soldering
- Taping : 8 mm conductive black carrier tape \& antistatic clear cover tape.

3,500pcs/reel, Ф180 mm wheel

2. Outline dimensions

3. Package material

(1) Material construction

Number	Item	Material
1	LED Chip	InGaN/Sapphire
2	Au wire	1.0 mil Gold Wire
3	Lead Frame	Copper Alloy/Ni/Ag plating
4	Encapsulation	Encapsulate + YAG phosphor
5	Heat-Resistant Polymer	PPA

4. Absolute Maximum Ratings
$\left(T A=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Value	Unit
Power dissipation	P_{D}	120	mW
Forward Current	I_{F}	30	mA
\star^{1} Peak Forward Current	$\mathrm{I}_{\text {FP }}$	100	mA
Reverse Voltage	V_{R}	5	${ }^{\circ} \mathrm{V}$
Operating Temperature	$\mathrm{T}_{\text {opr }}$	$-30 \sim+85$	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	$-40 \sim+100$	$260^{\circ} \mathrm{C}$ for 10 seconds
Soldering Temperature	$\mathrm{T}_{\text {sol }}$		

$* 1$. Duty ratio $=1 / 16$, Pulse width $=0.1 \mathrm{~ms}$
5. Electrical - Optical Characteristics
($\mathrm{TA}=25^{\circ} \mathrm{C}$)

Characteristic	Symbol	Test Condition	Min.	Typ.	Max.	Unit
ESD Check Forward Voltage	$\mathrm{V}_{\mathrm{F} 2}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{uA}$	2.0	-	-	V
Reverse Current	I_{R}	$\mathrm{~V}_{\mathrm{R}}=5 \mathrm{~V}$	-	-	10	uA
$*^{6}$ Half Angle	$\theta 1 / 2$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	-	± 55	-	deg

*6. $\theta 1 / 2$ is the off-axis angle where the luminous intensity is $1 / 2$ the peak intensity

6. Ranks

(1) Chromaticity Coordinates ranks

	Rank A			
x	0.27	0.27	0.29	0.29
y	0.24	0.28	0.27	0.31

	Rank C			
x	0.31	0.31	0.33	0.33
y	0.30	0.34	0.33	0.37

* The CIE(1931) standard colorimetric system
* Chromaticity coordinates Measured : 0.01 sr(CIE. LED_B)
* Measurement Uncertainty of the Color Coordinates : ± 0.01

LWH1025
(2) Luminous intensity ranks
($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Iv RANK	Test Condition	Min.	Typ.	Max.	Unit
R	$\mathrm{I}_{\mathrm{F}}=15 \mathrm{~mA}$	291		405	mcd
S		405		583	
T		583		810	
R	$I_{F}=20 \mathrm{~mA}$	360		500	
S		500		720	
T		720		1000	

* Luminous intensity is tested at a current pulse duration of 25 ms and an accuracy of $\pm 11 \%$.
* Luminous Intensity Measured : 0.01sr(CIE. LED_B)
(3) Forward Voltage
($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Test Condition	Min.	Typ.	Max.	Unit
$\mathrm{I}_{\mathrm{F}}=15 \mathrm{~mA}$		3.26	3.45	V
$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$		3.4	3.6	

* Voltages are tested at a current pulse duration of 1 ms and an accuracy of $\pm 0.1 \mathrm{~V}$.

7. Taping

(1) Dimension of wheel((Material : PS Conductive, 10E9~12 $)$
(Unit : mm)

(2) Dimension of tape(Material : PS Conductive, 10E4~5 8)

Different and Better
(3) Details of CHIPLEDs loading on tape

(4) Loading quantity per reel : 3,500pcs

8. Packing Struction

LUXPIA

9. Characteristic Diagrams

(3) Forward Current vs Forward Voltage(If-Vf)

(2) Max. Permissible Forward Current

(4) Ambient Temperature vs Relative Luminosity

(4) Relative Spectral Emission

(5) Radiation Characteristic
$\mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{IF}=20 \mathrm{~mA}$

10. Precautions to taken

(1) Reflow soldering

(2) For manual solder

Not more than 3sec@max $350^{\circ} \mathrm{C}$, under soldering iron
(3) Recommendable soldering pattern(For reflow soldering)

11. Reliability

(1) The Reliability criteria of SMD LED

ITEM	Symbol	Test Condition	Limit	
			Min.	Max.
Forward Voltage	$V F$	$I F=20 \mathrm{~mA}$	$I . V \times 0.8$	$I . V \times 1.2$
Reverse Voltage	$V R$	$I R=10 \mu \mathrm{~A}$	LSL	-
Luminous intensity	$I V$	$\mathrm{IF}=20 \mathrm{~mA}$	$\mathrm{I} . V \times 0.7$	$\mathrm{I} . \mathrm{V} \times 1.3$

* I: Initial Value U : Upper Spec Limit L : Lower Spec Limit
(2) Results of reliability Test

NO	Item	Test Conditions	Test Hours /Cycle	Sample Size	Ac/Re
1	Temperature Cycle	$\mathrm{H}:+100^{\circ} \mathrm{C} 30 \mathrm{~min}$ $25^{\circ} \mathrm{C} \quad 5 \mathrm{~min}$ $\mathrm{L}:-40^{\circ} \mathrm{C} 30 \mathrm{~min}$	$\begin{gathered} 100 \\ \text { Cycle } \end{gathered}$	21 pcs	0/1
2	High Temperature Operating Life	$\underset{(\mathrm{IF}=5 \mathrm{~mA})}{\mathrm{TEMP}: 85^{\circ} \mathrm{C}}$	1000HR's	21 pcs	0/1
3	Low Temperature Operating Life	$\begin{gathered} \text { TEMP : }-30^{\circ} \mathrm{C} \\ (\mathrm{IF}=20 \mathrm{~mA}) \end{gathered}$	1000HR's	21 pcs	0/1
4	DC Operating Life	$\begin{gathered} \text { TEMP : } 24^{\circ} \mathrm{C} \\ (\mathrm{IF}=30 \mathrm{~mA}) \end{gathered}$	500HR's	21 pcs	0/1
5	High Humidity Heat Operating Life	$\begin{gathered} 60^{\circ} \mathrm{C} / 90 \% \mathrm{RH}, \\ (\mathrm{IF}=15 \mathrm{~mA}) \end{gathered}$	500HR's	21 pcs	0/1
6	Solder Heat Test	$260^{\circ} \mathrm{C}, 10 \mathrm{sec}$.	2 Time	21 pcs	0/1

12. Precautions in use

(1) Soldering Conditions

1) When soldering, leave minimum clearance between the resin and the soldering point.
2) Maximum allowable soldering conditions

Soldering dipping : 260 degrees C max., 10 seconds max., 2 time.
Soldering iron: 350 degrees C max., 3 seconds max., 1 time, power 40w max.
3) Contact between molten solder and the resin must be avoided.
4) Correction the soldered position after soldering must be avoided.
5) In soldering, do not apply any stress to the lead frame, particularly when heated.
6) When other SMD parts on the same circuit board and adhesive is to be cured, maximum allowable conditions are : 120 degrees C max., 60 seconds max.
(2) Lead forming and cut

1) Lead forming must be done below the tie bar cutting portion.
2) When forming a lead, do not stress the resin case.
3) Lead forming must be done before soldering.
4) Cutting the lead frame at high temperature may result in personal injury.

Cut the lead frame at room temperature.

(3) Assembly

1) Do not apply any stress to the lead frame while assembling.
2) When mounting products onto PCBs, the pitch between the mounting holes must match the pitch of the LEDs.

(4) Static Electricity

1) These products are sensitive, a high standard of care must be used. Particularly if an overcurrent and over-voltage which exceeds the Absolute Maximum Rating of Products is applied, the overflow in energy may cause damage to, or possibly result in destruction of, the Products. Customer shall take absolutely secure countermeasures against static electricity and surge when handling Products.
2) A protection device should be installed in the LED driving circuit, which dose not exceed the max. rating for surge current during on/off switching.
3) Proper grounding of Products, use of conductive mat, semiconductive working uniform and shoes, and semiconductive containers are considered to be effective as countermeasures against static electricity and surge.
4) A soldering iron with a grounded tip is recommended. An ionizer should also be installed where risk of static generation is high.

(5) Safety Precautions

1) Users must comply with the laws and public regulations concerning safety. The light output of the products may cause injuries to human eyes in circumstances where the products are viewed directly with unshielded eyes for more than a few seconds.

13. Revision history sheet

Spec NO.			
Title	Specification for Approval		
Times	Date	Summary of revision	Remarks
1	2002. 12. 23	신규제정	
2	IV Rank 변경		
3	2003. 01.10	색좌표 변경 및 IF=15mA 측정조건 추가	

