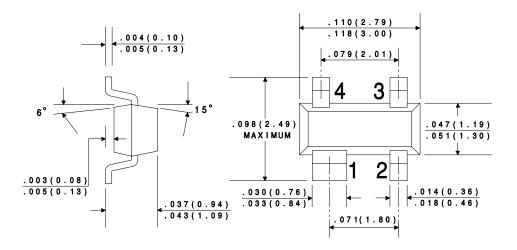
BAS28

DUAL, ISOLATED HIGH SPEED SWITCHING DIODE

Central ™ Semiconductor Corp.

DESCRIPTION:

The CENTRAL SEMICONDUCTOR BAS28 type is a ultra-high speed silicon switching diode manufactured by the epitaxial planar process, in an epoxy molded surface mount package with isolated dual diodes, designed for high speed switching applications.


Marking code is A61.

	SYMBOL		UNITS	
Continuous Reverse Voltage	V_{R}	75	V	
Peak Repetitive Reverse Voltage	VRRM	85	V	
Continuous Forward Current	l _F	250	mA	
Peak Repetitive Forward Current	IFRM	250	mA	
Forward Surge Current, tp=1 μsec.	IFSM	4000	mA	
Forward Surge Current, tp=1 msec.	IFSM	2000	mA	
Forward Surge Current, tp=1 sec.	IFSM	1000	mA	
Power Dissipation	PD	350	mW	
Operating and Storage	_			
Junction Temperature	T _J ,T _{stg}	-65 to +150	oC	
Thermal Resistance	Θ.ΙΑ	357	oC/W	

ELECTRICAL CHARACTERISTICS (T_A=25°C unless otherwise noted)

SYMBOL	TEST CONDITIONS	MIN	MAX	UNITS
IR	$V_{R}=25V, T_{A}=150^{o}C$		30	μΑ
I_{R}	V _R =75V		1.0	μΑ
I_{R}	$V_R = 75V, T_A = 150^{\circ}C$		50	μΑ
V_{F}	I _F =1.0mA		0.715	V
V_{F}	I _F =10mA		0.855	V
V_{F}	I _F =50mA		1.000	V
V_{F}	I _F =150mA		1.250	V
C _T	V _R =0, f=1 MHz		2.0	pF
t _{rr}	$I_F=I_R=10$ mA, $R_L=100\Omega$, Rec. to 1.0m.	A	6.0	ns
Q_S	$I_F=10$ mA, $V_R=5.0$ V, $R_L=500\Omega$		45	рС
V_{FR}	I _F =10mA, t _r =20ns		1.75	V

All dimensions in inches (mm).

LEAD CODE:

- 1) CATHODE 1
- 2) CATHODE 2
- 3) ANODE 2
- 4) ANODE 1