QLogic Corporation FAS366U Fast Architecture SCSI Processor Data Sheet ### **Features** - Compliance with ANSI draft Fast–20 standard - Compliance with ANSI X3T10/855D SCSI-3 parallel interface (SPI) standard - Compliance with ANSI SCSI configured automatically (SCAM) protocol levels 1 and 2 - Sustained SCSI data transfer rates of up to: - □ 40 Mbytes/sec synchronous (ultra and wide SCSI) - ☐ 14 Mbytes/sec asynchronous (wide SCSI) - Synchronous DMA timing; DMA speed of 50 Mbytes/sec - \blacksquare REO and ACK programmable assertion and deassertion control - Support for hot plugging - Target and initiator block transfer sequences - Bus idle timer - Split-bus architecture - Pipelined command structure - On-chip, single-ended SCSI transceivers (48–mA drivers) - Initiator and target roles - Active negation - 16-bit recommand counter - Differential mode - SCSI bus reset watchdog timer Figure 1. FAS366U Block Diagram # **Product Description** The FAS366U is a new addition to the QLogic fast architecture SCSI processor (FAS) chip family. The FAS366U supports advanced SCSI–3 options including ultra SCSI synchronous transfers. Also included is the advanced SCAM level 2 SCSI controller core. The FAS366U is a single–chip controller for use in host and peripheral applications. It is firmware and pin–out compatible with the QLogic FAS366 chip. The FAS366U block diagram is shown in figure 1. The FAS366U implements QLogic's new SCSI target and initiator block transfer sequences. The block sequences reduce firmware overhead and are composed of the following new commands: Target Block Sequence (including the bus idle timer), Initiator Block Sequence, Load/Unload Block Registers sequences, Abort Block Sequence, and Disconnect Abort Block Sequence. The FAS366U supports both single-ended and differential mode SCSI operations and operates in initiator and target roles. The FAS366U has been optimized for interaction with a DMA controller and the controlling microprocessor. The versatile split—bus architecture supports various microprocessor and DMA bus configurations. A separate 8—bit microprocessor bus (PAD) provides access to all internal registers, and a 16—bit DMA bus (DB) provides a path for DMA transfers through the FIFO. Each bus is protected by a parity bit (byte—wide parity) to improve data integrity. During data transfer, the microprocessor has instant access to status and has the ability to execute commands. # **SCAM Implementation** The FAS366U supports levels 1 and 2 of the SCAM protocol. Refer to the latest revision of X3T10/855D, Annex B. The SCAM protocol requires direct access and control over the SCSI data bus and several of the SCSI phase and control signals. The majority of the SCAM protocol can be implemented in firmware at microprocessor speeds. The following SCAM features are supported in the hardware: - Arbitration without an ID - Slow response to selection with an unconfirmed ID - Detection of and response to SCAM selection ## **Fast DMA Protocol** The fast DMA protocol is required for supporting the full bandwidth of ultra, wide SCSI. The DREQ signal initiates DMA transfers and runs asynchronous to the user's clock. For read operations, DACK acts as a chip select to enable the FAS366U drivers onto the DMA bus. The chip select role of \overline{DACK} helps support the burst timing of fast DMA mode. \overline{DACK} selects the FAS366U after DREQ is asserted and is removed either after DREQ is deasserted or when the DMA transfer is paused. DBRD requests data from the FAS366U and DBWR validates data sent to the FAS366U. Data is valid around the rising (trailing) edge of DBRD or DBWR. DMA transfers are terminated by deasserting DREQ. Deassertion of DREQ is triggered by the leading edge of \overline{DBRD} or \overline{DBWR} (see timing parameter t1 in figures 2 and 3) under any of the following conditions: - To prevent FIFO overrun conditions - To prevent FIFO underrun conditions - When the required amount of data has been transferred When DREQ is deasserted, the FAS366U ignores DBRD and DBWR. Data transfers do not take place unless DREO is asserted. The FAS366U does not generate parity on the incoming DMA bus. Correct parity must always be supplied with the data. The DMA interface signals are given in table 1. DMA timing is given in table 2 and figures 2 and 3. Table 1. DMA Interface Signals | Pin | Туре | Active
Level | Description | | |--------|------|-----------------|---|--| | DREQ | О | High | The FAS366U DMA request line begins and ends DMA cycles. | | | DACK | I | Low | The acknowledge is used as a chip select to activate FAS366U drivers and to acknowledge acceptance of DREQ. | | | DBRD | I | Rising edge | The trailing edge accepts data from the FAS366U for DMA read operations. | | | DBWR | I | Rising edge | The trailing edge strobes data into the FAS366U FIFO on DMA write operations. | | | DB15-0 | I/O | N/A | This is the DMA data bus. | | Table 2. DMA Timing | Symbol | Description | Minimum (ns) | Maximum (ns) | Note | |--------|--|--------------|--------------|------| | t1 | DBRD/DBWR low to DREQ low | | 12 | a | | t2 | DACK high to DREQ high | TBD | | | | t3 | $\overline{\mathrm{DACK}}$ high to $\overline{\mathrm{DACK}}$ low | 40 | | | | tR1 | DACK low to DBRD low | tR5 | | | | tR2 | DBRD assertion pulse width | 15 | | | | tR3 | DBRD deassertion pulse width | 15 | | | | tR4 | DBRD high to DACK high | tR3 | | b | | tR5 | $\overline{\mathrm{DBRD}}$ low to $\overline{\mathrm{DBRD}}$ low cycle | 40 | | | | tR6 | DACK low to DB15–0 read on | 2 | | с | | tR7 | DACK high to DB15–0 read off | | 15 | с | | tR8 | DBRD low to DB15–0 read valid | | 15 | c | | tR9 | DBRD low to DB15-0 read invalid | 0 | | с | | tW1 | DACK low to DBWR low | tW5 | | | | tW2 | DBWR assertion pulse width | 15 | | | | tW3 | DBWR deassertion pulse width | 15 | | | | tW4 | DBWR high to DACK high | tW3 | | d | | tW5 | DBWR low to DBWR low cycle | 40 | | | | tW6 | DB15–0 write setup to DBWR high | 10 | | | | tW7 | DB15–0 write hold from DBWR high | 5 | | | 53366-580-01 B FAS366U 3 Table Notes aDREQ loading is 30 pf. bDBRD low to DACK high≥tR5 ^eData loading is 50 pf. ^dDBWR low to DACK high≥tW5 Figure 2. DMA Read Cycle Figure 3. DMA Write Cycle # **Interfaces** The FAS366U interfaces consist of the microprocessor bus and the SCSI bus. Pins that support these interfaces and other chip operations are shown in figure 4. 126-122, 120-118, 116, 115, 113-108 101-104, 21-24, 49-52, 82-85 16, 37, 53, 60, 67, 90, 105 76, 78-80, 26-28, 30, 64, 65, 68-70, 72-74 7, 12, 17, 35, 87, 106 6, 18, 25, 29, 34, 46, 54, 59, 66, 71, 77, 81, 89, 98, 107, 114, 121, 128 ESD15-0 = NO CONNECT = SD15-0 = VDD Figure 4. FAS366U Functional Signal Grouping 53366-580-01 B FAS366U 5 # **Packaging** The FAS366U is available in a 128-pin plastic quad flat pack (PQFP). The pin diagram for this package is illustrated in figure 5. The FAS366U package dimensions are shown in figure 6. Figure 5. FAS366U Pin Diagram NOTE: ALL DIMENSIONS ARE IN MILLIMETERS. Figure 6. FAS366U Mechanical Drawings # **Electrical Characteristics** Table 1. Operating Conditions | Symbol | Description | Minimum | Maximum | Unit | |-----------------------------|------------------------------|---------|---------|------| | VDD | Supply voltage | 4.75 | 5.25 | V | | IDD ^a | Supply current (static IDD) | | TBD | mA | | $\mathrm{IDD}_{\mathbf{p}}$ | Supply current (dynamic IDD) | | TBD | mA | | TA | Ambient temperature | 0 | 70 | °C | ## Table Notes Conditions not within the operating conditions but within the absolute maximum stress ratings may cause the chip to malfunction. 53366-580-01 B FAS366U 7 ^aStatic IDD is measured with no clocks running and all inputs forced to VDD, all outputs unloaded, and all bidirectional pins configured as inputs. ^bDynamic IDD is dependent on the application. Specifications are subject to change without notice. QLogic is a trademark of QLogic Corporation. glogic ©July 14, 1995 QLogic Corporation, 3545 Harbor Blvd., Costa Mesa, CA 92626, (800) ON-CHIP-1 or (714) 438-2200