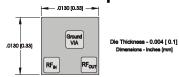

Product Description

Sirenza Microdevices' SNA-200 is a GaAs monolithic broadband amplifier (MMIC) in die form. At 1950 MHz, this amplifier provides 16dB of gain when biased at 50mA.

These unconditionally stable amplifiers are designed for use as general purpose 50 ohm gain blocks. Its small size (0.33mm x 0.33mm) and gold metallization make it an ideal choice for use in hybrid circuits.


External DC decoupling capacitors determine low frequency response. The use of an external resistor allows for bias flexibility and stability.

The SNA-200 is supplied in gel paks at 100 devices per pak. Also available in packaged form (SNA-276 & SNA-286)

SNA-200

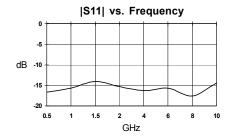
DC-6.5 GHz, Cascadable GaAs MMIC Amplifier

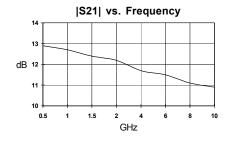
Not Recommended for New Designs, Use SNA-200S

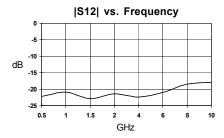
Product Features

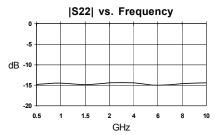
- Cascadable 50 Ohm Gain Block
- 16dB Gain, +14dBm P1dB
- 1.5:1 Input and Output VSWR
- Operates From Single Supply
- Chip Back Is Ground

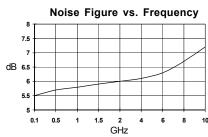
Symbol	Parameter	Units	Frequency	Min.	Тур.	Max.
G _P	Small Signal Power Gain	dB dB dB	850 MHz 1950 MHz 2400 MHz		16.0 15.5 15.3	
G _F	Gain Flatness	dB	0.1-4.0 GHz		+/- 1.0	
BW3dB	3dB Bandwidth	GHz			6.5	
P _{1dB}	Output Power at 1dB Compression	dBm	1950 MHz		14.0	
NF	Noise Figure	dB	1950 MHz		5.5	
VSWR	Input / Output	-	0.1-6.5 GHz		1.5:1	
OIP ₃	Output Third Order Intercept Point	dBm	1950 MHz		27.0	
ISOL	Reverse Isolation	dB	0.1-6.5 GHz		20	
V _D	Device Operating Voltage	V		3.3	3.8	4.3
I _D	Device Operating Current	mA		45	50	55
dG/dT	Device Gain Temperature Coefficient	dB/°C			-0.0018	
R _{TH} , j-b	Thermal Resistance (junction to backside)	°C/W			270	
Test Conditi	$V_s = 8 V$ $I_D = 50 \text{ mA Typ.}$	OIP ₃ Tone	Spacing = 1 MHz,	Pout per	tone = 0 dE	3m

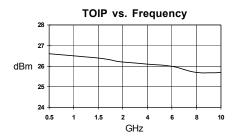

Test Conditions: R_{BIAS} = 82 Ohms = 25°C $Z_s = Z_i = 50 \text{ Ohms}$ The information provided herein is believed to be reliable at press time. Sirenza Microdevices assumes no responsibility for inaccuracies or omissions. Sirenza Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are


implied or granted to any third party. Sirenza Microdevices does not authorize or warrant any Sirenza Microdevices product for use in life-support devices and/or systems. Copyright 2001 Sirenza Microdevices, Inc. All worldwide rights reserved. 303 South Technology Court Broomfield, CO 80021

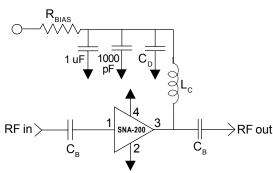

http://www.sirenza.com EDS-102429 Rev C

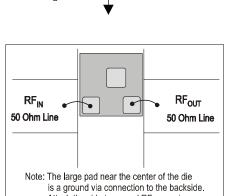



Typical Performance at 25° C (Vds =3.8V, Ids = 50mA)



Absolute Maximum Ratings


Parameter	Absolute Limit	
Max. Device Current (I _D)	70 mA	
Max. Device Voltage (V _D)	6 V	
Max. RF Input Power	+20 dBm	
Max. Junction Temp. (T _J)	+200°C	
Operating Temp. Range (T _L)	-40°C to +85°C	
Max. Storage Temp.	+150°C	

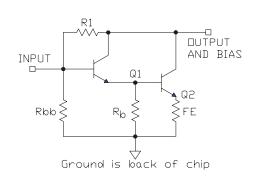

Operation of this device beyond any one of these limits may cause permanent damage. For reliable continous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one.

Bias Conditions should also satisfy the following expression: $\rm I_{\rm D}V_{\rm D}<(T_{\rm J}$ - $\rm T_{\rm L})$ / $\rm R_{\rm TH}$, j-I

Phone: (800) SMI-MMIC

Typical Application Circuit

Suggested Bonding Arrangement (above configuration used for S-parameter data)


Attach the chip to a good RF ground

using a conductive media

Application Circuit Element Values

Reference	Frequency (Mhz)				
Designator	500	850	1950	2400	3500
C _B	220 pF	100 pF	68 pF	56 pF	39 pF
C _D	100 pF	68 pF	22 pF	22 pF	15 pF
L _c	68 nH	33 nH	22 nH	18 nH	15 nH

Recommended Bias Resistor Values for I _D =50mA				
Supply Voltage(V _s)	6 V	8 V	10 V	12 V
R _{BIAS}	43 Ω	82 Ω	120 Ω	160 Ω
Note: $R_{\scriptsize BIAS}$ provides DC bias stability over temperature.				

Simplified Schematic of MMIC

For recommended handling, die attach, and bonding methods, see the following application note at www.sirenza.com.

AN-041 (PDF) Handling of Unpackaged Die

Part Number Ordering Information			
Part Number	Gel Pack		
SNA-200	100 pcs. per pack		

Die are shipped per Sirenza application note AN-039 Visual Criteria For Unpackaged Die

Phone: (800) SMI-MMIC