
CSF-LAB/PPI 8255/CC/EIE PolyU/p.1

PPI/CC

Hong Kong Polytechnic University
Department of Electronic and Information Engineering

Experiment
On

8255 PPI chip

Objectives : To study how 8255 PPI chip works.

After completing this experiment, you should know the different operation modes of
an 8255 PPI chip and how to configure the chip to operate in a particular operation
mode. You should also know how to use handshake to transfer data in an interface.

Software : Text editor, 8051 cross-assembler, 8051 linker and 8051 programmer

Apparatus : 8051 evaluation board and 8255 evaluation board

Reference : H-P. Messmer, "The indispensable PC hardware book," 3rd Ed, Addison-Wesley,

1997 Chapter 29 Section 2.
Barry B. Bery, “The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386,
80486, Pentium, Pentium Pro Processor, Pentium II, Pentium III, Pentium 4 -
Architecture, Programming, and Interfacing”, 6th Ed, Chapter 11, Section 3.

 8255 datasheet
 AT89S8252 datasheet (instruction set)

Background

The 8255 PPI chip is a general purpose programmable I/O device which is designed for use with all
Intel and most other microprocessors. The 8255 has 24 I/O pins divided into 3 groups of 8 pins each.
The groups are denoted by port A, port B and port C respectively. Every one of the ports can be
configured as either an input port or an output port.

The 8255 can be programmable in three different modes:

• Mode 0: simple unidirectional input/output without handshake
• Mode 1: unidirectional input/output with handshake via some pins of port C
• Mode 2: bidirectional input/output with handshake via some pins of port C

Handshake is a common technique used to transfer data in an interface. A computer and a device
usually operate at different system clock rates and hence the data transfer between their
corresponding I/O interface may not be so reliable. For example, the device might not be fast enough

CSF-LAB/PPI 8255/CC/EIE PolyU/p.2

to catch the data transmitted from the CPU. Handshake provides a means to improve the reliability
of a data transfer.

Method and details

In this lab, you will study how to program an 8255 PPI chip to operate in different operation modes
with an 8051 evaluation board and an 8255 evaluation board. Figure 1 shows the setup of the
system. You are requested to modify some given 8051 program modules with a text editor in a
computer. The modified programs, when they are run in the 8051 evaluation board, should be able to
program port A and port B of the 8255 in the 8255 evaluation board to operate in one of their
operation modes. You can assemble and link your program modules with the provided cross-
assembler and linker to generate executable files. Executable files can then be loaded to the 8051
evaluation board via the printer port of the computer to program the on-board AT89S8252. The
AT89S8252 is a low-power, high-performance CMOS 8-bit microcomputer with 8K bytes of
Downloadable Flash programmable and erasable read only memory and 2K bytes of EEPROM. The
device is manufactured by Atmel and is compatible with the industry standard 80C51 instruction set
and pinout.

Computer

printer
port 8051

evaluation
board

8255
evaluation

board

8051
local bus

Figure 1. Setup of the system

After programming the AT89S8252, the AT89S8252 executes the loaded program to configure the
8255 and the ports of the 8255 should operate in the desired modes.

As there are 3 ports in 8255 and each one of them can be programmed as an input or output port,
there are a number of possible configurations. In this lab, four configurations given in Table 1 will
be studied.

configuration Port A Port B Port C
1 Mode 0, input Mode 0, output Don’t care
2 Mode 1, input Mode 0, output Handshake for port A
3 Mode 0, input Mode 1, output Handshake for port B
4 Mode 1, input Mode 1, output Handshake for ports A and B

Table 1. Some configurations of 8255

You are requested to do the following in this lab.

1. Setup the apparatus as shown in Figure 2.

CSF-LAB/PPI 8255/CC/EIE PolyU/p.3

2. Appendix D1 lists a program for configuration 1 (Ai0Bo0.asm). This program repeatedly reads

port A and writes the data read to port B. Assemble, link and load the program into the 8051
evaluation board. You may refer to Appendix C for the details.

Run the program and observe the behavior of the evaluation board. You may define the input
with the dip switch connected to port A and the LEDs connected to port B show the data you
input.

Study the program. Pay special attention to the procedures of configuring the 8255 and the
setting value of the control register. Try to derive your own setting from datasheet or the
information provided in Appendix B. Check if yours is identical to the one provided in the
program.

8051
(CPU)

Device A

Device B

RD

WR

Data

Data

8255
(PPI)

port
A

port
B

Data

3. Appendix D2 lists a program (Ai0Bo0X.asm) for configuration 1 as well. In this program, a 2.5s
delay is added into the loop. By doing so, it simulates the case that the CPU periodically reads
port A and reports the result via port B immediately. Port B is programmed to blink before it
reports a result.

Load the program into the AT89S8252 evaluation board and run it. See what happens.

Since port A operates at mode 0, no handshake is exploited. The CPU does not know when a
data comes. Suppose every change of the dip switch corresponds a data byte transferred from an
external device. Answer the following questions.

Q1. Can the CPU receive and report all inputs from the device if the device transfers its data at
a rate of 4 bytes per second?

Q2. Suppose now the device transfers its data at a rate of 1 byte per second. Can the CPU know
there is no available data from the device when it tries to read a byte from port A? Can it
stop reading and reporting rubbish in such a case?

4. Appendix D3 lists a program for configuration 2(Ai1Bo0X.asm). In this program, as port A

operates in mode 1, handshaking signal is provided through port C of 8255 and hence the CPU
can make use of handshake to synchronize itself with an external device in a data transfer. This
makes the transfer much more reliable.

CSF-LAB/PPI 8255/CC/EIE PolyU/p.4

8051
(CPU)

Device A

Device B

IBF

STB

RD

WR

Data

Data

8255
(PPI)

port
A

port
B

Data

pC1

pC2pC0

pC3

pC5

pC4

 Load the program into the AT89S8252 evaluation board and run it. Change the setting of the dip

switch and press the button marked ‘port A mode 1 input’ in the 8255 evaluation board once.
This action corresponds to that an external device generates a strobe to signal the 8255 when its
data is ready for transmission. What happens when you do this? Repeat the steps at different
speed. Does the CPU miss receiving and reporting your inputs? Does the CPU read something
even though you do not do anything?

 Study the program carefully. See how the program uses handshake to improve the performance.

5. Ai1Bo0X.asm does the job with programmed-I/O technique. It keeps checking the handshake

signal and waits until the data is ready. This keeps the CPU busy doing something without
contribution. The CPU can be released by using interrupt to handle a data transfer. Appendix D4
lists an incomplete program for configuration 2(Ai1Bo0.asm). It is a better alternative to
Ai1Bo0X.asm.

8051
(CPU)

Device A

Device B

IBF

STB

RD

INTR

WR

Data

Data

8255
(PPI)

port
A

port
B

Data

pC1

pC2pC0

pC3

pC5

pC4

 Complete the program by filling up the blank fields. Test your program with the evaluation

boards. Study the program to see how it exploits interrupt to do the job.

6. Appendix D5 lists an incomplete program for configuration 3(Ai0Bo1.asm). Complete the

program and test your program with the evaluation boards. Record your observation.

CSF-LAB/PPI 8255/CC/EIE PolyU/p.5

8051
(CPU)

Device A

Device B

RD

OBF

ACK

WR

INTR

Data

Data

8255
(PPI)

port
A

port
B

Data

pC1

pC2pC0

pC3

pC5

pC4

7. Based on Ai1Bo0.asm and Ai0Bo1.asm, write a program to configure 8255 to operate in
configuration 4. Test your program and verify if it functions with the evaluation boards.

8051
(CPU)

Device A

Device B

IBF

STB

RD

INTR

OBF

ACK

WR

INTR

Data

Data

8255
(PPI)

port
A

port
B

Data

pC1

pC2pC0

pC3

pC5

pC4

8. Try to configure the 8255 to function at other operation modes if time is allowed. (For more
capable student)

- END -

Appendix

Appendix A. Schematic diagrams of the evaluation boards
Appendix B. Summary of the technical information of 8255
Appendix C. Editing, assembling, linking and loading programs to the 8051 evaluation board
Appendix D. Program listing
Appendix E. View of the evaluation boards

CSF-LAB/PPI 8255/CC/EIE PolyU/p.6

Appendix A Schematic diagrams of the evaluation boards

CSF-LAB/PPI 8255/CC/EIE PolyU/p.7

CSF-LAB/PPI 8255/CC/EIE PolyU/p.8

Appendix B. Summary of the technical information of 8255

• Internal structure:

• Port and register addresses:

• Port connections:

CSF-LAB/PPI 8255/CC/EIE PolyU/p.9

• Status word obtained by reading port C:

• Command words:

CSF-LAB/PPI 8255/CC/EIE PolyU/p.10

• Operation modes:

Mode 1 operation

Mode 2 operation

CSF-LAB/PPI 8255/CC/EIE PolyU/p.11

• Set/reset IRTEs:

 Port C Interrupt
Signal Pin
Number

To enable Interrupt
Request Set Port C
bit

MODE 1
Port A IN PC3 PC4
Port B IN PC0 PC2
Port A OUT PC3 PC6
Port B OUT PC0 PC2
MODE 2
Port A IN PC3 PC4
Port A OUT PC3 PC6

CSF-LAB/PPI 8255/CC/EIE PolyU/p.12

Appendix C. Editing, assembling, linking and loading programs to the 8051 evaluation board

You may use any text editor such as Notepad in Windows to edit your 8051 program. Then you can
assemble and link your program so as to make it loadable to the evaluation board for debugging.

Suppose your program is ready and is now stored in the working directory where the 8051 cross-
assembler(X8051.exe) and the 8051 linker(Link.exe) are in. Run X8051.exe to activate the cross-
assembler. Figure C1 shows the user interface of the cross-assembler. In the interface, the cross-
assembler will prompt for inputting listing destination, input filename and output filename. You
have to specify the input filename. As for others, you can skip them by just entering ‘↵’. If no error
is detected by the cross-assembler, an object file with extension ‘.obj’ will be generated.

Figure C1. User interface of X8051.exe

Run Link.exe to activate the linker. Figure C2 shows the user interface of the linker. The linker will
prompt for inputting parameters. All you need to do is to specify the input filename. It should be an
object file with extension ‘.obj’. As an example, Figure C2 shows the case that the input file is
pgm8051.obj. You can skip all other prompts by just entering ‘↵’. If no error is detected, a binary
file with extension ‘.hex’ will be generated.

Figure C2. User interface of Link.exe

A universal programmer called PonyProg is provided in this lab. Figure C3 shows the user interface
provided by the programmer. This programmer can program a specified binary file into the flash

CSF-LAB/PPI 8255/CC/EIE PolyU/p.13

memory of an 8051-compatiable controller via the printer port of a computer system. To order to do
it successfully, you have to make sure that the device you want to program is AT89S8252. You can
check (and select) via the listbox in the interface as shown Figure C3. Besides, you have to check
the interface setup by selecting ‘Setup’ in the pulldown menu ‘Options’. Select the setting shown in
Figure C4.

Figure C3. User interface of the programmer

After configuring the programmer, one can load a program, namely, a file of extension ‘.hex’, into
the working environment and program the AT89S8252 in the evaluation board. To load the program
into the working environment, you can push the fourth pushbutton from the left in the toolbar and
then select the desired file. Figure C5 shows a snapshot of the user interface after program
‘pgm8051.hex’ was loaded into the environment. Then you can push the second pushbutton from the
left in the toolbar to load the program into the AT89S8252.

CSF-LAB/PPI 8255/CC/EIE PolyU/p.14

Figure C4. Setting for the interface between the evaluation board and the computer

Figure C5. A snapshot of the user interface after a program is loaded into the working environment

CSF-LAB/PPI 8255/CC/EIE PolyU/p.15

Appendix D. Program listing

D.1 listing of Ai0Bo0.asm

; Ai0Bo0.asm
; Port A -> mode 0 input
; Port B -> mode 0 output
; Input data from port A and output it to prot B

pa equ 8000h ; prot a
pb equ pa+1 ; prot b
pc equ pa+2 ; prot c
cr equ pa+3 ; control register

 org 00h
 ajmp main
;------------------------------------
main:
 mov sp,#60h ; set stack pointer to address 60h

 mov r5,#10 ; delay 10ms for
 call delay ; 8255 initialization

 mov a,#90h ; set port a to mode 0 input
 mov dptr,#cr ; and port b to mode 0 output
 movx @dptr,a

loop:
 mov dptr,#pa ; input from port a
 movx a,@dptr

 mov dptr,#pb ; output to port b
 movx @dptr,a

 jmp loop

;------------------------------------
delay: ; delay time = r5*10ms
 mov r6,#50
$1: mov r7,#100
$2: djnz r7,$2

 djnz r6,$1
 djnz r5,delay
 ret

;------------------------------------
 end

CSF-LAB/PPI 8255/CC/EIE PolyU/p.16

D.2 listing of Ai0Bo0X.asm

; Ai0Bo0X.asm
; Port A -> mode 0 input
; Port B -> mode 0 output
; Input data from port A and output it to prot B

pa equ 8000h ; prot a
pb equ pa+1 ; prot b
pc equ pa+2 ; prot c
cr equ pa+3 ; control register

 org 00h
 ajmp main
;------------------------------------
main:
 mov sp,#60h ; set stack pointer to address 60h

 mov r5,#10 ; delay 100ms for
 call delay ; 8255 initialization

 mov a,#90h ; set port a to mode 0 input
 mov dptr,#cr ; and port b to mode 0 output
 movx @dptr,a

loop: ; periodically wait 2.5s, get a data

; and dump it

 mov r5,#250 ; delay 2.5s
 call delay ;

 mov a,#0 ; clear port b for 20ms
 mov dptr,#pb ;
 movx @dptr,a ;
 mov r5,#2 ;
 call delay ;

 mov a,#255 ; set port b for 20ms
 mov dptr,#pb ;
 movx @dptr,a ;
 mov r5,#2 ;

 call delay ;

 mov dptr,#pa ; input from port a
 movx a,@dptr

 mov dptr,#pb ; output to port b
 movx @dptr,a

 jmp loop

;------------------------------------
delay: ; delay time = r5*10ms
 mov r6,#50
$1: mov r7,#100
$2: djnz r7,$2
 djnz r6,$1
 djnz r5,delay
 ret

;------------------------------------
 end

CSF-LAB/PPI 8255/CC/EIE PolyU/p.17

D.3 listing of Ai1Bo0X.asm

; Ai1Bo0X.asm
; Port A -> mode 1 input
; Port B -> mode 0 output
; Input data from port A and output it to prot B

pa equ 8000h ; prot a
pb equ pa+1 ; prot b
pc equ pa+2 ; prot c
cr equ pa+3 ; control register

 org 00h
 ajmp main

;------------------------------------
main:
 mov sp,#60h ; set stack pointer to address 60h

 mov r5,#10 ; delay 10ms for
 call delay ; 8255 initialization

 mov a,#b0h ; set port a to mode 1 input
 mov dptr,#cr ; and port b to mode 0 output
 movx @dptr,a

loop:
 mov dptr,#pc ; get status word of 8255
 movx a,@dptr ; to check if IBF(bit 5)=1
 anl a,#20h
 jz loop

 mov a,#0 ; clear port b for 20ms
 mov dptr,#pb ;
 movx @dptr,a ;
 mov r5,#2 ;
 call delay ;

 mov a,#255 ; set port b for 20ms
 mov dptr,#pb ;
 movx @dptr,a ;
 mov r5,#2 ;

 call delay ;

 mov dptr,#pa ; input from port a
 movx a,@dptr

 mov dptr,#pb ; output to port b
 movx @dptr,a

 jmp loop

;------------------------------------
delay: ; delay time = r5*10ms
 mov r6,#50
$1: mov r7,#100
$2: djnz r7,$2
 djnz r6,$1
 djnz r5,delay
 ret

;------------------------------------
 end

CSF-LAB/PPI 8255/CC/EIE PolyU/p.18

D.4 listing of Ai1Bo0.asm

; Ai1Bo0.asm
; Port A -> mode 1 input
; Port B -> mode 0 output
; Input data from port A and output it to prot B

pa equ 8000h ; prot a
pb equ pa+1 ; prot b
pc equ pa+2 ; prot c
cr equ pa+3 ; control register

 org 00h
 ajmp main
 org 13h
 ajmp int1
;------------------------------------
main:
 mov sp,#60h ; set stack pointer to address 60h

 setb it1 ; set int1 to negative edge trigger
 setb ea ; enable hardware interrupt
 setb ex1 ; enable int1

 mov r5,#10 ; delay 10ms for
 call delay ; 8255 initialization

 mov a,_____ ; set port a to mode 1 input
 mov dptr,#cr ; and port b to mode 0 output
 movx @dptr,a

 mov a,_____ ; enable interrupt request
 mov dptr,#cr ; for port a
 movx @dptr,a

loop:
 mov dptr,#pb ; output to port b
 movx @dptr,a

 jmp loop

;------------------------------------

int1:
 mov r5,#200 ; delay 200ms to make
 call delay ; IBF visible

 mov dptr,#pa ; input from port a
 movx a,@dptr

 reti

;------------------------------------
delay: ; delay time = r5*10ms
 mov r6,#50
$1: mov r7,#100
$2: djnz r7,$2
 djnz r6,$1
 djnz r5,delay
 ret

;------------------------------------
 end

CSF-LAB/PPI 8255/CC/EIE PolyU/p.19

D.5 listing of Ai0Bo1.asm

; Ai0Bo1.asm
; Port A -> mode 0 input
; Port B -> mode 1 output
; Input data from port A and output it to prot B
pa equ 8000h ; prot a
pb equ pa+1 ; prot b
pc equ pa+2 ; prot c
cr equ pa+3 ; control register

 org 00h
 ajmp main
 org 03h
 ajmp int0
;------------------------------------
main:
 mov sp,#60h ; set stack pointer to address 60h

 setb it0 ; set int0 to negative edge trigger
 setb ea ; enable hardware interrupt
 setb ex0 ; enable int0

 mov r5,#10 ; delay 10ms for
 call delay ; 8255 initialization

 mov a,_____ ; set port a to mode 0 input
 mov dptr,#cr ; and port b to mode 1 output
 movx @dptr,a

 mov a,_____ ; enable interrupt request
 mov dptr,#cr ; for port b
 movx @dptr,a

loop:
 mov dptr,#pa ; input from port a
 movx a,@dptr

 jmp loop

;------------------------------------
int0:

 mov dptr,#pb ; output to port b
 movx @dptr,a

 reti

;------------------------------------
delay: ; delay time = r5*10ms
 mov r6,#50
$1: mov r7,#100
$2: djnz r7,$2
 djnz r6,$1
 djnz r5,delay
 ret

;------------------------------------
 end

CSF-LAB/PPI 8255/CC/EIE PolyU/p.20

D.6 listing of Ai1Bo1.asm

; Ai1Bo1.asm
; Port A -> mode 1 input
; Port B -> mode 1 output
; Input data from port A and output it to prot B
pa equ 8000h ; prot a
pb equ pa+1 ; prot b
pc equ pa+2 ; prot c
cr equ pa+3 ; control register

 org 00h
 ajmp main
 org 03h
 ajmp int0
 org 13h
 ajmp int1
;------------------------------------
main:
 mov sp,#60h ; set stack pointer to address 60h

 setb it0 ; set int0 to negative edge trigger
 setb it1 ; set int1 to negative edge trigger
 setb ea ; enable hardware interrupt
 setb ex0 ; enable int0
 setb ex1 ; enable int1

 mov r5,#10 ; delay 10ms for
 call delay ; 8255 initialization

 mov a,______ ; set port a to mode 1 input
 mov dptr,_____ ; and port b to mode 1 output
 movx @dptr,a

 mov a,_______ ; enable interrupt request
 mov dptr,______ ; for port b
 movx @dptr,a

 mov a,_______ ; enable interrupt request
 mov dptr,______ ; for port a
 movx @dptr,a

loop:
 jmp loop

;------------------------------------
int0:
 mov dptr,_____ ; output to port b
 movx @dptr,a

 reti

;------------------------------------
int1:
 mov dptr,_____ ; input from port a
 movx a,@dptr

 reti

;------------------------------------
delay: ; delay time = r5*10ms
 mov r6,#50
$1: mov r7,#100
$2: djnz r7,$2
 djnz r6,$1
 djnz r5,delay
 ret

;------------------------------------
 end

CSF-LAB/PPI 8255/CC/EIE PolyU/p.21

Appendix E. Views of the evaluation boardsProgram listing

Figure A.E-1 8051 evaluation board

Figure A.E-2 8255 evaluation board

