

NPN SILICON GERMANIUM RF TRANSISTOR NESG260234

NPN SiGE RF TRANSISTOR FOR MEDIUM OUTPUT POWER AMPLIFICATION (1 W) 3-PIN POWER MINIMOLD (34 PKG)

FEATURES

This product is suitable for medium output power (1 W) amplification

 $P_{out} = 30 \text{ dBm TYP.} @ V_{CE} = 6 \text{ V}, P_{in} = 15 \text{ dBm}, f = 460 \text{ MHz}$

 $P_{out} = 30 \text{ dBm TYP.}$ @ $V_{CE} = 6 \text{ V}$, $P_{in} = 20 \text{ dBm}$, f = 900 MHz

- MSG (Maximum Stable Gain) = 23 dB TYP. @ VcE = 6 V, Ic = 100 mA, f = 460 MHz
- Using UHS2-HV process (SiGe technology), VcBo (ABSOLUTE MAXIMUM RATINGS) = 25 V
- 3-pin power minimold (34 PKG)

ORDERING INFORMATION

Part Number	Order Number	Package	Quantity	Supplying Form
NESG260234	NESG260234-AZ	3-pin power minimold (Pb-Free) Note1, 2	25 pcs (Non reel)	Magazine case
NESG260234-T1	NESG260234-T1-AZ		1 kpcs/reel	• 12 mm wide embossed taping
				Pin 2 (Emitter) face the perforation side of the tape

- Notes 1. Contains Lead in the part except the electrode terminals.
 - 2. With regards to terminal solder (the solder contains lead) plated products (conventionally plated), contact your nearby sales office.

Remark To order evaluation samples, contact your nearby sales office.

Unit sample quantity is 25 pcs.

ABSOLUTE MAXIMUM RATINGS (TA = +25°C)

Parameter	Symbol	Ratings	Unit
Collector to Base Voltage	Vсво	25	V
Collector to Emitter Voltage	Vceo	9.2	V
Emitter to Base Voltage	VEBO	2.8	V
Collector Current	lc	600	mA
Total Power Dissipation	Ptot Note	1.9	W
Junction Temperature	Tj	150	°C
Storage Temperature	T _{stg}	-65 to +150	°C

Note Mounted on 34.2 cm² × 0.8 mm (t) glass epoxy PWB

Caution Observe precautions when handling because these devices are sensitive to electrostatic discharge.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

THERMAL RESISTANCE (TA = +25°C)

Parameter	Symbol	Ratings	Unit
Termal Resistance from Junction to Ambient Note	Rth _{j-a}	65	°C/W

Note Mounted on 34.2 cm² × 0.8 mm (t) glass epoxy PWB

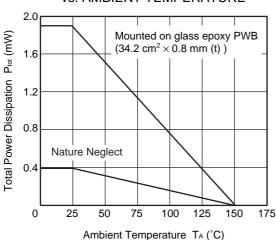
RECOMMENDED OPERATING RANGE (TA = +25°C)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Collector to Emitter Voltage	Vce	1	6.0	7.2	V
Collector Current	lc	-	400	500	mA
Input Power Note	Pin	_	15	20	dBm

Note Input power under conditions of $V_{CE} \le 6.0 \text{ V}$, f = 460 MHz

ELECTRICAL CHARACTERISTICS (TA = +25°C)

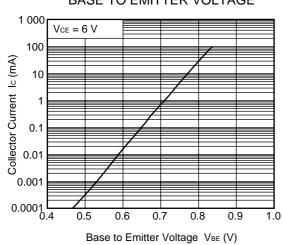
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
DC Characteristics						
Collector Cut-off Current	Ісво	VcB = 9.2 V, IE = 0 mA	=	-	1	μА
Emitter Cut-off Current	ІЕВО	VEB = 1.0 V, Ic = 0 mA	_	_	1	μА
DC Current Gain	hfe Note	Vce = 3 V, Ic = 100 mA	80	120	180	=
RF Characteristics						
Linner Gain (1)	G∟	$V_{CE} = 6 \text{ V}, \text{ Ic (set)} = 30 \text{ mA (RF OFF)},$	19	22	_	dB
		f = 460 MHz, P _{in} = 0 dBm				
Linner Gain (2)	GL	VcE = 6 V, Ic (set) = 30 mA (RF OFF),	-	19	_	dB
		$f = 900 \text{ MHz}, P_{in} = 0 \text{ dBm}$				
Output Power (1)	Pout	VcE = 6 V, Ic (set) = 30 mA (RF OFF),	28.5	30.0	_	dBm
		f = 460 MHz, P _{in} = 15 dBm				
Output Power (2)	Pout	VcE = 6 V, Ic (set) = 30 mA (RF OFF),	-	30.0	_	dBm
		f = 900 MHz, P _{in} = 20 dBm				
Collector Efficiency (1)	ηс	$V_{CE} = 6 \text{ V, Ic}$ (set) = 30 mA (RF OFF),	_	50	_	%
, ,	,	f = 460 MHz, P _{in} = 15 dBm				
Collector Efficiency (2)	ηс	$V_{CE} = 6 \text{ V, Ic}$ (set) = 30 mA (RF OFF),	_	60	-	%
		f = 900 MHz, P _{in} = 20 dBm				

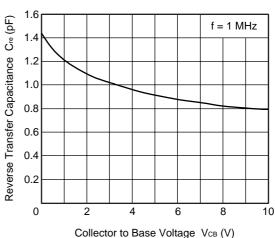

Note Pulse measurement: PW \leq 350 μ s, Duty Cycle \leq 2%

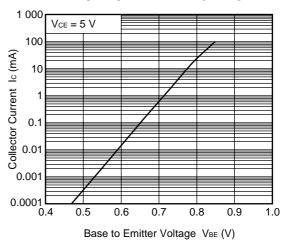
hfe CLASSIFICATION

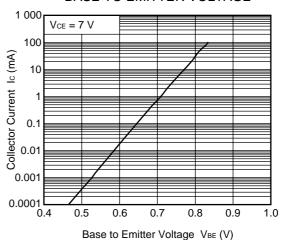
Rank	FB		
Marking	SP		
hfe Value	80 to 180		

★ TYPICAL CHARACTERISTICS (TA = +25°C, unless otherwise specified)

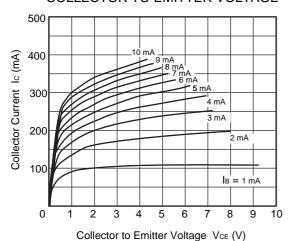



COLLECTOR CURRENT vs. BASE TO EMITTER VOLTAGE

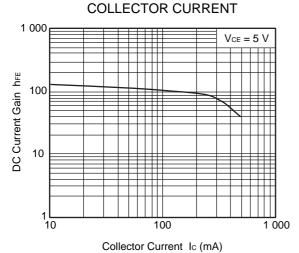

COLLECTOR CURRENT vs. BASE TO EMITTER VOLTAGE


REVERSE TRANSFER CAPACITANCE vs. COLLECTOR TO BASE VOLTAGE

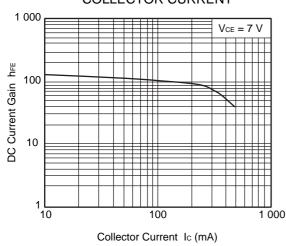
COLLECTOR CURRENT vs. BASE TO EMITTER VOLTAGE



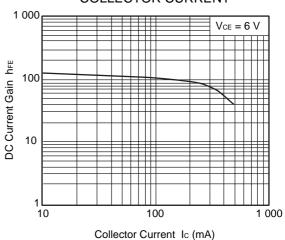
COLLECTOR CURRENT vs. BASE TO EMITTER VOLTAGE



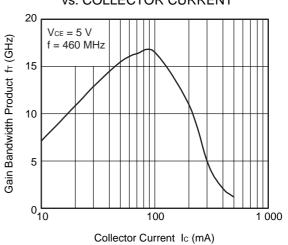
Remark The graphs indicate nominal characteristics.

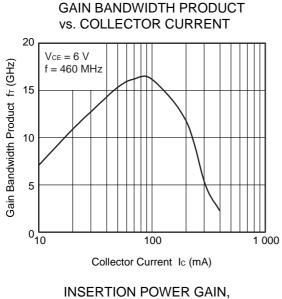

COLLECTOR CURRENT vs. COLLECTOR TO EMITTER VOLTAGE

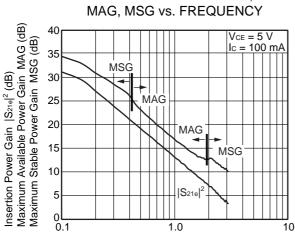
DC CURRENT GAIN vs.

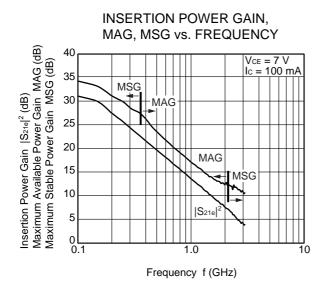


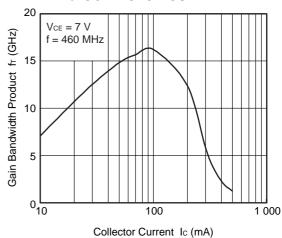
DC CURRENT GAIN vs. COLLECTOR CURRENT

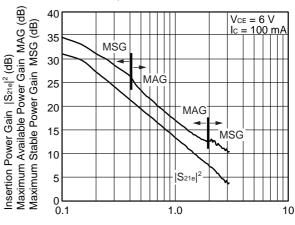


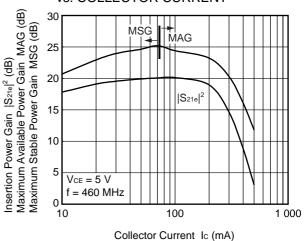

Remark The graphs indicate nominal characteristics.


DC CURRENT GAIN vs. COLLECTOR CURRENT

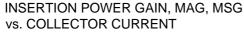

GAIN BANDWIDTH PRODUCT vs. COLLECTOR CURRENT

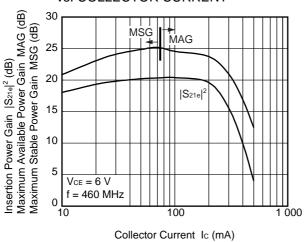



Frequency f (GHz)

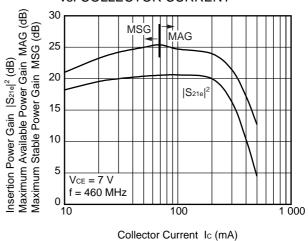


INSERTION POWER GAIN, MAG, MSG vs. FREQUENCY




INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT

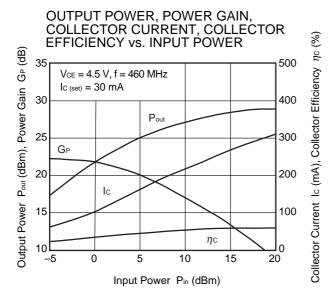
Frequency f (GHz)



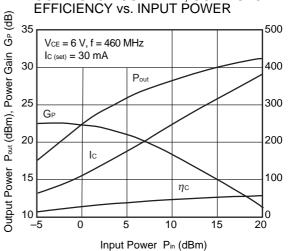
Remark The graphs indicate nominal characteristics.

INSERTION POWER GAIN, MAG, MSG vs. COLLECTOR CURRENT

★ S-PARAMETERS

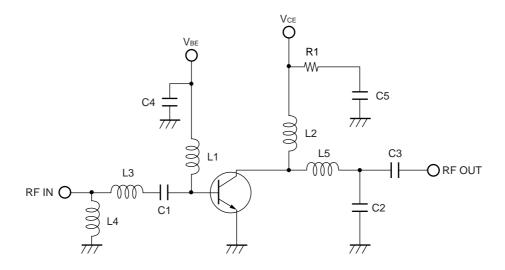

S-parameters/Noise parameters are provided on the NEC Compound Semiconductor Devices Web site in a form (S2P) that enables direct import to a microwave circuit simulator without keyboard input.

Click here to download S-parameters.

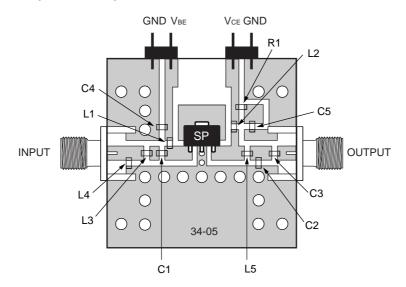

[RF and Microwave] → [Device Parameters]

URL http://www.ncsd.necel.com/

★ PA EVALUATION CIRCUIT TYPICAL CHARACTERISTICS



OUTPUT POWER, POWER GAIN, COLLECTOR CURRENT, COLLECTOR EFFICIENCY vs. INPUT POWER

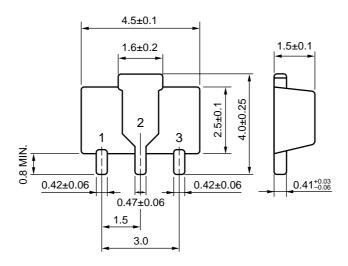

Remark The graphs indicate nominal characteristics.

★ EVALUATION CIRCUIT (f = 460 MHz)

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

★ EVALUATION BOARD (f = 460 MHz)

Notes


- 1. 20×20 mm, t = 0.8 mm double sided copper clad glass epoxy PWB.
- 2. Back side: GND pattern
- 3. Solder gold plated on pattern
- 4. o O: Through holes

★ COMPONENT LIST

Component	Maker	Value	Size (TYPE)	Purpose
C1	Murata	10 pF	1005	Input DC Block/Input RF Matching
C2	Murata	4 pF	1005	Input RF Matching
C3	Murata	33 pF	1005	Input DC Block/Output RF Matching
C4	Murata	10 000 pF	1005	RF GND
C5	Murata	1 <i>μ</i> F	1608	RF GND
L1	Toko	68 nH	1005	RF Block/Input RF Matching
L2	Toko	33 nH	LLQ2021	RF Block/Output RF Matching
L3	Toko	1 nH	1005	Input RF Matching
L4	Toko	8.2 nH	1005	Input RF Matching
L5	Toko	8.2 nH	LLQ2021	Output RF Matching
R1	SSM	15 Ω	1608	Improve Stability

PACKAGE DIMENSIONS

3-PIN POWER MINIMOLD (34 PKG) (UNIT: mm)

PIN CONNECTIONS

- 1. Collector
- 2. Emitter
- 3. Base

4590 Patrick Henry Drive Santa Clara, CA 95054-1817 Telephone: (408) 919-2500

Facsimile: (408) 988-0279

Subject: Compliance with EU Directives

CEL certifies, to its knowledge, that semiconductor and laser products detailed below are compliant with the requirements of European Union (EU) Directive 2002/95/EC Restriction on Use of Hazardous Substances in electrical and electronic equipment (RoHS) and the requirements of EU Directive 2003/11/EC Restriction on Penta and Octa BDE.

CEL Pb-free products have the same base part number with a suffix added. The suffix –A indicates that the device is Pb-free. The -AZ suffix is used to designate devices containing Pb which are exempted from the requirement of RoHS directive (*). In all cases the devices have Pb-free terminals. All devices with these suffixes meet the requirements of the RoHS directive.

This status is based on CEL's understanding of the EU Directives and knowledge of the materials that go into its products as of the date of disclosure of this information.

Restricted Substance per RoHS	Concentration Limit per RoHS (values are not yet fixed)		on contained devices
Lead (Pb)	< 1000 PPM	-A -AZ Not Detected (*)	
Mercury	< 1000 PPM	Not Detected	
Cadmium	< 100 PPM	Not Detected	
Hexavalent Chromium	< 1000 PPM	Not Detected	
PBB	< 1000 PPM	Not Detected	
PBDE	< 1000 PPM	Not Detected	

If you should have any additional questions regarding our devices and compliance to environmental standards, please do not hesitate to contact your local representative.

Important Information and Disclaimer: Information provided by CEL on its website or in other communications concerting the substance content of its products represents knowledge and belief as of the date that it is provided. CEL bases its knowledge and belief on information provided by third parties and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. CEL has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. CEL and CEL suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall CEL's liability arising out of such information exceed the total purchase price of the CEL part(s) at issue sold by CEL to customer on an annual basis.

See CEL Terms and Conditions for additional clarification of warranties and liability.