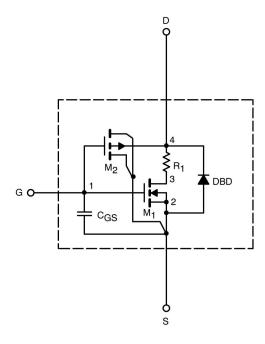


SPICE Device Model Si4920DY Vishay Siliconix

Dual N-Channel 30-V (D-S) MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to $125^{\circ}\mathrm{C}$ temperature ranges under the pulsed 0 to 10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

 Document Number: 71008
 www.vishay.com

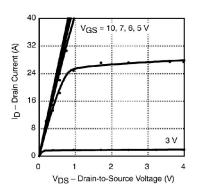
 18-May-04
 1

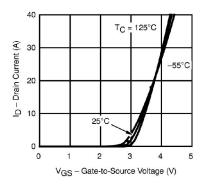
Lodel Si4920DY

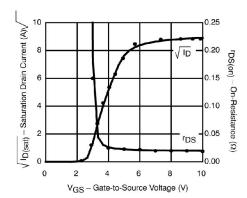
Vishay Siliconix

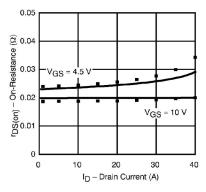
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS},\ I_D=250\ \mu A$	2		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	238		Α
Drain-Source On-State Resistance ^a	-	V _{GS} = 10 V, I _D = 6.9 A	0.020	0.020	Ω
	r _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D = 5.8 \text{ A}$	0.023	0.026	
Forward Transconductance ^a	g fs	V _{DS} = 15 V, I _D = 6.9 A	23	25	S
Diode Forward Voltage ^a	V_{SD}	$I_S = 1.7 A$, $V_{GS} = 0 V$	0.72		V
Dynamic ^b					
Total Gate Charge	Qg	$V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_{D} = 6.9 \text{ A}$	29	30	nC
Gate-Source Charge	Q_{gs}		7.5	7.5	
Gate-Drain Charge	Q_{gd}		3.5	3.5	
Turn-On Delay Time	t _{d(on)}	$V_{DD} = 15 \text{ V}, R_L = 15 \Omega$ $I_D \cong 1 \text{ A}, V_{GEN} = 10 \text{ V}, R_G = 6 \Omega$	10	12	- Ns
Rise Time	t _r		13	10	
Turn-Off Delay Time	t _{d(off)}		15	60	
Fall Time	t _f		32	15	
Source-Drain Reverse Recovery Time	t _{rr}	I _F = 1.7 A, di/dt = 100 A/μs	32	50	

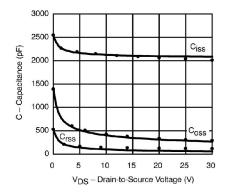
www.vishay.com Document Number: 71008

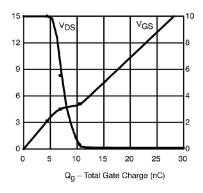

<sup>a. Pulse test; pulse width ≤ 300 µs, duty cycle ≤ 2%
b. Guaranteed by design, not subject to production testing</sup>




SPICE Device Model Si4920DY Vishay Siliconix




COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.

Document Number: 71008 www.vishay.com 18-May-04