1A Fixed Low Dropout Positive Voltage Regulators ## **General Description** The RT9164B is designed for applications requiring low dropout performance at fully rated current. Additionally, the RT9164B provides excellent regulation over variations in line and load. Outstanding features include low dropout performance at rated current, fast transient response, internal current-limiting, and thermal-shutdown protection of the output device. The RT9164B available in space-saving TO-252 package. ## **Ordering Information** ### Note: RichTek Pb-free and Green products are : - ▶RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020. - ▶Suitable for use in SnPb or Pb-free soldering processes. - ▶100%matte tin (Sn) plating. ### **Features** - Low Dropout Performance, 1.4V Max. - Full Current Rating Over Line and Temperature - Fast Transient Response - ± 0.5% Output Voltage Accuracy - RoHS Compliant and 100% Lead (Pb)-Free ## **Applications** - Active SCSI Termination - Low Voltage Microcontrollers - Switching Power Supply Post-Regulator ## **Pin ConFigurations** TO-252 (R-Type) ## **Typical Application Circuit** - (1) C_{IN} needed if device is far from filter capacitors. - (2) C_{OUT} required for stability. DS9164B-02 March 2007 www.richtek.com # **Function Block Diagram** # **Functional Pin Description** | Pin Name | Pin Function | |----------|----------------| | GND | Ground | | VOUT | Output Voltage | | VIN | Power Input | ### Absolute Maximum Ratings (Note 1) | Supply Input Voltage | 15V | |---|---------------| | • Power Dissipation, P _D @ T _A = 25°C | | | TO-252 | 1.471W | | Package Thermal Resistance (Note 6) | | | TO-252, θ_{JA} | 68° C/W | | TO-252, θ_{JC} | 7.5° C/W | | • Lead Temperature (Soldering, 10 sec.) | 260°C | | • Junction Temperature | 150°C | | Storage Temperature Range | 65°C to 150°C | | • ESD Susceptibility (Note 2) | | | HBM (Human Body Mode) | 8 kV | | MM (Machine Mode) | 750V | ### **Recommended Operating Conditions** (Note 3) - Supply Input Voltage ----- 3V to 12V ### **Electrical Characteristics** (T_A = 25°C, unless otherwise specified) | Parameter | Symbol | Test Conditions Min Typ | | Тур | Max | Units | |--------------------------|-------------------|--|-----|--------|------|-------| | Output Voltage (Note 4) | V _{OUT} | I _{OUT} = 10mA, V _{IN} = 4.75V, T _J = 25°C 3.2835 3.3 | | 3.3165 | V | | | Line Regulation (Note 4) | ΔV_{LINE} | OUT = 0mA, 4.75V ≤ V _{IN} ≤ 15V | | 1 | 6 | mV | | Load Regulation (Note 4) | ΔV_{LOAD} | $I_{IN} = 4.75V, 0 \le I_{OUT} \le 1.0A$ | | 1 | 12 | mV | | Dropout Voltage (Note 5) | IVDBOB | I _{OUT} = 500mA | | 1.15 | 1.25 | V | | | | I _{OUT} = 1.0A | | 1.3 | 1.4 | V | | Current Limit | I _{LIM} | V _{IN} = 5V | 1.0 | 1.8 | | Α | | Quiescent Current | IQ | V _{IN} = 5V | | 5 | 10 | mA | | Ripple Rejection | PSRR | f_{RIPPLE} = 120Hz, $(V_{IN} - V_{OUT})$ = 2V, V_{RIPPLE} = 1V _{P-P} | | 72 | | dB | - **Note 1.** Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability. - Note 2. Devices are ESD sensitive. Handling precaution recommended. - Note 3. The device is not guaranteed to function outside its operating conditions. - Note 4. Low duty cycle pulse testing with Kelvin connections. - Note 5. The dropout voltage is defined as V_{IN} -V_{OUT}, which is measured when V_{OUT} is V_{OUT(NORMAL)} 100mV. - Note 6. θ_{JA} is measured in the natural convection at T_A = 25°C on a low effective thermal conductivity test board of JEDEC 51-3 thermal measurement standard. The case point of θ_{JC} is on the center of the exposed pad. The pad size is 100mm² on TO-252 package. DS9164B-02 March 2007 www.richtek.com ## **Typical Operating Characteristics** ## **Application Information** #### **Input Bypass Capacitor** An input capacitor is recommended. A 10µF tantalum on the input is a suitable input bypassing for almost all applications. #### **Output Capacitor** RT9164B requires a capacitor from V_{OUT} to GND to provide compensation feedback to the internal gain stage. This is to ensure stability at the output terminal. Typically, 10µF tantalum or $50\mu F$ aluminum electrolytic with $30m\Omega$ to 2Ω range capacitor is sufficient. The output capacitor does not have a theoretical upper limit and increasing its value will increase stability. C_{OUT} = 100 μ F or more is typical for high current regulator design. ### Region of Stable Cout ESR vs. Load Current #### Thermal Protection RT9164B has thermal protection which limits junction temperature to 150°C. However, device functionality is only guaranteed to a maximum junction temperature of +125°C. The power dissipation and junction temperature for RT9164B are given by Load Current (A) $$P_D = (V_{IN} - V_{OUT}) \times I_{OUT}$$ $T_{JUNCTION} = T_{AMBIENT} + (P_D \times \theta_{JA})$ Note: TJUNCTION must not exceed 125°C #### **Current Limit Protection** RT9164B is protected against overload conditions. Current protection is triggered at typically 1.8A. #### **Thermal Consideration** The RT9164B contains thermal limiting circuitry designed to protect itself from over-temperature conditions. Even for normal load conditions, maximum junction temperature ratings must not be exceeded. As mention in thermal protection section, we need to consider all sources of thermal resistance between junction and ambient. It includes junction-to-case, case-to-heat-sink interface, and heat sink thermal resistance itself. Junction-to-case thermal resistance is specified from the IC junction to the bottom of the case directly below the die. Proper mounting is required to ensure the best possible thermal flow from this area of the package to the heat sink. The case of all devices in this series is electrically connected to the output. Therefore, if the case of the device must be electrically isolated, a thermally conductive spacer is recommended. DS9164B-02 March 2007 www.richtek.com # **Outline Dimension** | O. mah al | Dimensions I | In Millimeters | Dimensions In Inches | | | |-----------|--------------|----------------|----------------------|-------|--| | Symbol | Min | Max | Min | Max | | | Α | 2.184 | 2.388 | 0.086 | 0.094 | | | В | 0.889 | 2.032 | 0.035 | 0.080 | | | b | 0.508 | 0.889 | 0.020 | 0.035 | | | b1 | 1.016 Ref. | | 0.040 | Ref. | | | b2 | 0.457 | 0.584 | 0.018 | 0.023 | | | С | 0.457 | 0.584 | 0.018 | 0.023 | | | D | 6.350 | 6.731 | 0.250 | 0.265 | | | D1 | 5.207 | 5.461 | 0.205 | 0.215 | | | Е | 5.334 | 6.223 | 0.210 | 0.245 | | | е | 2.108 | 2.438 | 0.083 | 0.096 | | | L1 | 9.398 | 10.414 | 0.370 | 0.410 | | | L2 | 0.508 Ref. | | 0.020 Ref. | | | | L3 | 0.635 | 1.016 | 0.025 | 0.040 | | | U | 3.810 Ref. | | 0.150 Ref. | | | | V | 3.048 Ref. | | 0.120 Ref. | | | | R | 0.200 | 0.850 | 0.008 | 0.033 | | | S | 2.500 | 3.400 | 0.098 | 0.134 | | | Т | 0.500 | 0.850 | 0.020 | 0.033 | | 3-Lead TO-252 Surface Mount Package ### **Richtek Technology Corporation** Headquarter 5F, No. 20, Taiyuen Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789 Fax: (8863)5526611 ### **Richtek Technology Corporation** Taipei Office (Marketing) 8F, No. 137, Lane 235, Paochiao Road, Hsintien City Taipei County, Taiwan, R.O.C. Tel: (8862)89191466 Fax: (8862)89191465 Email: marketing@richtek.com DS9164B-02 March 2007 www.richtek.com