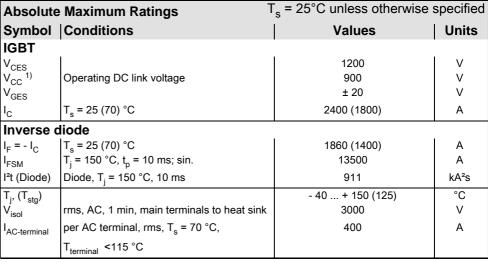
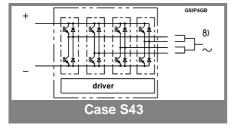

SKiiP 2413GB123-4DL

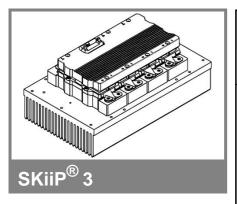

2-pack-integrated intelligent Power System

Power section SKiiP 2413GB123-4DL


Data

Power section features

- SKiiP technology inside
- Trench IGBTs
- CAL HD diode technology
- · Integrated current sensor
- · Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 3 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized File no. E63532
- with assembly of suitable MKP capacitor per terminal
- 8) AC connection busbars must be connected by the user; copper busbars available on request



Characte	Characteristics				T _s = 25°C unless otherwise specified				
	Conditions				min.	typ.	max.	Units	
IGBT						-7			
V _{CEsat}	I _C = 1200 measured at	A, T _j = 25 (terminal	(125) °C;			1,7 (1,9)	2,1	V	
V_{CEO}	T _j = 25 (125) °C; at terminal					0,9 (0,8)	1,1 (1)	V	
r _{CE}	$T_j = 25 (125) °C;$ at terminal					0,7 (0,9)	0,9 (1,2)	mΩ	
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES},$ $T_i = 25 (125) ^{\circ}\text{C}$					4,8 (144)		mA	
$E_{on} + E_{off}$	I _C = 1200 A, V _{CC} = 600 V				442		mJ		
	T _j = 125 °C, V _{CC} = 900 V				780			mJ	
R _{CC+EE}	terminal c	terminal chip, T _i = 25 °C				0,13			
L _{CE}	top, botto	m				3		nΗ	
C _{CHC}	per phase, AC-side			6,8			nF		
Inverse o	diode								
$V_F = V_{EC}$	I _F = 1200 measured at	A, T _j = 25 (terminal	(125) °C			1,5 (1,5)	1,8	V	
V_{TO}	T _i = 25 (1)	25) °C				0,9 (0,7)	1,1 (0,9)	V	
r _T	$T_i = 25 (1)$	25) °C				0,5 (0,7)	0,6 (0,8)	mΩ	
Ė _{rr}		$A, V_{CC} = 6$	00 V			84	, ,	mJ	
	T _j = 125 °	C, V _{CC} = 90	00 V			112		mJ	
Mechani	cal data				•				
M_{dc}	DC termin	nals, SI Uni	ts		6		8	Nm	
M _{ac}	AC terminals, SI Units			13		15	Nm		
W	SKiiP® 3 System w/o heat sink					3,1		kg	
w	heat sink					9,7		kg	
	Thermal characteristics (PX 16 heat sink with fan SKF 16B-230-1); "s" reference to heat sink; "r" reference to built-in temperature sensor								
$R_{th(j-s)I}$	per IGBT	,				•	0,015	K/W	
R _{th(j-s)D}	per diode						0,029	K/W	
Z _{th}	R _i (mK/W) (max. valı	ues)		tau _i (s)				
	1	2	3	4	1	2	3	4	
$Z_{th(j-r)I}$	5,6	6	6,4	0	363	0,18	0,04	1	
$Z_{th(j-r)D}$	10	8,4	14,8	14,8	50	5	0,25	0,04	
$Z_{th(r-a)}$	3,1	17,3	3,7	0,9	230	78	13	0,4	

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

SKiiP 2413GB123-4DL

2-pack-integrated intelligent Power System

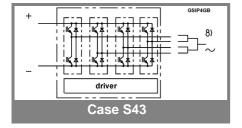
2-pack integrated gate driver SKiiP 2413GB123-4DL

Data

Gate driver features

- · CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and

DC-bus voltage (option)


- Short circuit protection
- · Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 60068-1 (climate) 40/85/56
- UL recognized file no. 242581

Absolute	Maximum Ratings	_a = 25°C unless otherwise specified		
Symbol	Conditions	Values	Units	
V_{S2}	unstabilized 24 V power supply	30	V	
V_{i}	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
V_{isollO}	input / output (AC, rms, 2s)	3000	V	
V _{isoIPD}	partial discharge extinction voltage, rms, Q _{PD} ≤10 pC;	1170	V	
V _{isol12}	output 1 / output 2 (AC, rms, 2s)	1500	V	
f _{sw}	switching frequency	8	kHz	
f _{out}	output frequency for I _{peak(1)} =I _C	8	kHz	
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C	

Characte	ristics	(T _a = 25°C			
Symbol	Conditions	min.	typ.	max.	Units
V_{S2}	supply voltage non stabilized	13	24	30	V
I _{S2}	V _{S2} = 24 V	324+50*f/kHz+0,00011*(I _{AC} /A) ²			mA
V _{iT+}	input threshold voltage (High)	12,3		12,3	V
V_{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
C _{IN}	input capacitance		1		nF
t _{d(on)IO}	input-output turn-on propagation time		1,3		μs
t _{d(off)IO}	input-output turn-off propagation time		1,3		μs
t _{pERRRESET}	error memory reset time		9		μs
t_{TD}	top / bottom switch interlock time		3,3		μs
I _{analogOUT}	max. 5mA; 8 V corresponds to 15 V supply voltage for external components		2400		Α
I _{s1out}	max. load current			50	mA
I _{TRIPSC}	over current trip level				
	(I _{analog} OUT = 10 V)		3000		Α
T_tp	over temperature protection	110		120	°C
U _{DCTRIP}	U_{DC} -protection ($U_{analog OUT} = 9 V$);		not implemented	d	V
	(option for GB types)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

