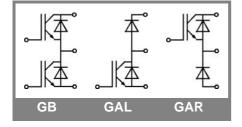
SK30GB067

IGBT Module

SK30GB067 **SK30GAL067 SK30GAR067**

Target Data

Features


- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Hyperfast NPT technology IGBT
- N-channel homogeneous silicon structure (NPT Non-Punch-Through IGBT)
- Positive V_{ce,sat} temperature coefficient (Easy paralleling)
- · Low tail current with low temperature dependence
- · Low treshold voltage

Typical Applications

- Switching (not for linear use)
- **High Frequencies Applications**
- Welding generator
- Switched mode power supplies
- UPS

Absolute Maximum Ratings T _s = 25 °C, unless otherwise specified						
Symbol	Conditions		Values	Units		
IGBT	•		·	•		
V_{CES}	T _j = 25 °C		600	V		
I _C	T _j = 125 °C	T _s = 25 °C	45	Α		
		$T_s = 80 ^{\circ}C$	30	Α		
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		120	Α		
$V_{\rm GES}$			± 20	V		
t _{psc}	V_{CC} = 300 V; $V_{GE} \le 20$ V; $V_{CES} < 600$ V	T _j = 125 °C	10	μs		
Inverse D	Diode					
I _F	T _j = 150 °C	$T_s = 25 ^{\circ}C$	45	Α		
		$T_s = 80 ^{\circ}C$	30	Α		
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			Α		
I _{FSM}	t _p = 10 ms; sinusoidal	$T_j = {^{\circ}C}$	180	Α		
Module						
I _{t(RMS)}				Α		
T _{vj}			-40 + 150	°C		
T _{stg}			-40 +125	°C		
V _{isol}	AC, 1 min.		2500	V		

Characteristics T _s = 25 °C, unless otherwise specified						
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 0.6$ mA		3	4	5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C			0,004	mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			240	nA
V _{CE0}		T _j = 150 °C			2	V
r _{CE}	V _{GE} = 15 V	T _j = 150°C		30		mΩ
V _{CE(sat)}	I _{Cnom} = 60 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		2,8	3,15	V
		$T_j = 125^{\circ}C_{chiplev}$		3,5	4	V
C _{ies}				3		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,3		nF
C _{res}				0,18		nF
t _{d(on)}				32		ns
t,	R_{Gon} = 11 Ω	$V_{CC} = 400V$		20		ns
Ė _{on}		I _{Cnom} = 60A		1,8		mJ
t _{d(off)}	R_{Goff} = 11 Ω	T _j = 125 °C		340		ns
t _f		V _{GE} =±15V		30		ns
E_{off}				1,4		mJ
$R_{th(j-s)}$	per IGBT				0,85	K/W

SK30GB067

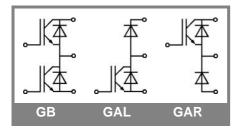
IGBT Module

SK30GB067 SK30GAL067 SK30GAR067

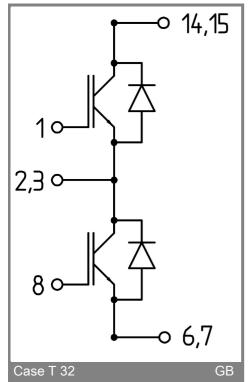
Target Data

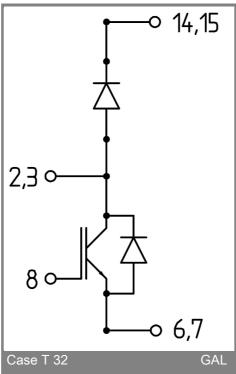
Features

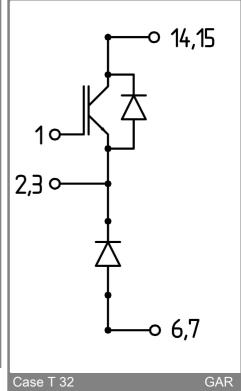
- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Hyperfast NPT technology IGBT
- N-channel homogeneous silicon structure (NPT Non-Punch-Through IGBT)
 - Positive V_{ce,sat} temperature coefficient (Easy paralleling)
- Low tail current with low temperature dependence
- · Low treshold voltage


Typical Applications


- Switching (not for linear use)
- High Frequencies Applications
- Welding generator
- Switched mode power supplies
- UPS


Characteristics								
Symbol	Conditions		min.	typ.	max.	Units		
Inverse Diode								
$V_F = V_{EC}$	I_{Fnom} = 60 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{chiplev.}$			2	V		
		$T_j = 150 ^{\circ}C_{chiplev.}$		1,25		V		
V_{F0}		T _j = 25 °C				V		
		T _j = 150 °C		1		V		
r _F		T _j = 25 °C				mΩ		
		T _j = 150 °C		9		$m\Omega$		
I _{RRM}	I _{Fnom} = 30 A	T _j = 125 °C		18		Α		
Q_{rr}	di/dt = -100 A/µs	,		1,5		μC		
E _{rr}	V _{CC} = 400V					mJ		
$R_{th(j-s)D}$	per diode				1,6	K/W		
M_s	to heat sink				2	Nm		
w				19		g		


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

