December 2007 Ultra FRFET # FDD5N50U # N-Channel MOSFET, FRFET 500V, 3A, 2.0Ω #### **Features** - $R_{DS(on)}$ = 1.65 Ω (Typ.)@ V_{GS} = 10V, I_D = 1.5A - Low gate charge (Typ. 11nC) - Low C_{rss} (Typ. 5pF) - · Fast switching - · 100% avalanche tested - · Improved dv/dt capability - · RoHS compliant # Description These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DOMS technology. This advance technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutationmode. These devices are well suited for high efficient switched mode power supplies and active power factor correction. # MOSFET Maximum Ratings T_C = 25°C unless otherwise noted* | Symbol | | Parameter | | Ratings | Units | |-----------------------------------|--|--------------------------------------|-------------------|-------------|-------| | V _{DSS} | Drain to Source Voltage | | | 500 | V | | V _{GSS} | Gate to Source Voltage | Gate to Source Voltage | | | | | 1 | Drain Current | -Continuous (T _C = 25°C) | | 3 | ^ | | ID | Drain Current | -Continuous (T _C = 100°C) | | 1.8 | A | | I _{DM} | Drain Current | - Pulsed | - Pulsed (Note 1) | | Α | | E _{AS} | Single Pulsed Avalanche Energy (Note | | (Note 2) | 275 | mJ | | I _{AR} | Avalanche Current | | (Note 1) | 3 | Α | | E _{AR} | Repetitive Avalanche Energy | у | (Note 1) | 4 | mJ | | dv/dt | Peak Diode Recovery dv/dt | | (Note 3) | 4.5 | V/ns | | n | Davies Dissination | (T _C = 25°C) | | 40 | W | | P _D Power Dissipation | | - Derate above 25°C | | 0.3 | W/°C | | T _J , T _{STG} | Operating and Storage Temperature Range | | | -55 to +150 | °C | | T _L | Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds | | | 300 | °C | ## **Thermal Characteristics** | Symbol | Parameter | Ratings | Units | |-----------------|---|---------|--------| | $R_{\theta JC}$ | Thermal Resistance, Junction to Case | 1.4 | °C/W | | $R_{\theta,JA}$ | Thermal Resistance, Junction to Ambient | 110 | · C/VV | # Package Marking and Ordering Information T_C = 25°C unless otherwise noted | Device Marking | Device | Package | Reel Size | Tape Width | Quantity | |----------------|------------|---------|-----------|------------|----------| | FDD5N50U | FDD5N50UTM | D-PAK | 380mm | 16mm | 2500 | | FDD5N50U | FDD5N50UTF | D-PAK | 380mm | 16mm | 2000 | # **Electrical Characteristics** | Symbol | Parameter Test Conditions | | Min. | Тур. | Max. | Units | |--------------------------------------|--|--|------|------|------|-------| | Off Charac | cteristics | | | | | | | BVDSS | Drain to Source Breakdown Voltage | $I_D = 250\mu A$, $V_{GS} = 0V$, $T_J = 25^{\circ}C$ | 500 | - | - | V | | $\frac{\Delta BV_{DSS}}{\Delta T_J}$ | Breakdown Voltage Temperature
Coefficient | I _D = 250μA, Referenced to 25°C | - | 0.6 | - | V/°C | | | Zero Gate Voltage Drain Current | V _{DS} = 500V, V _{GS} = 0V | - | - | 25 | | | IDSS | Zero Gate voltage Drain Current | $V_{DS} = 400V, T_C = 125^{\circ}C$ | - | - | 250 | μΑ | | I _{GSS} | Gate to Body Leakage Current | $V_{GS} = \pm 30V, V_{DS} = 0V$ | - | - | ±100 | nA | #### On Characteristics | V _{GS(th)} | Gate Threshold Voltage | $V_{GS} = V_{DS}, I_D = 250 \mu A$ | 3 | - | 5 | V | |---------------------|--------------------------------------|---|---|------|---|---| | R _{DS(on)} | Static Drain to Source On Resistance | $V_{GS} = 10V, I_D = 1.5A$ | - | 1.65 | 2 | Ω | | 9 _{FS} | Forward Transconductance | V _{DS} = 20V, I _D = 1.5A (Note 4) | - | 4 | - | S | # **Dynamic Characteristics** | C _{iss} | Input Capacitance | V _{DS} = 25V, V _{GS} = 0V
f = 1MHz | | - | 485 | 650 | pF | |---------------------|-------------------------------|---|--|---|-----|-----|----| | C _{oss} | Output Capacitance | | | - | 65 | 90 | pF | | C _{rss} | Reverse Transfer Capacitance | | | - | 5 | 8 | pF | | Q _{g(tot)} | Total Gate Charge at 10V | | | - | 11 | 15 | nC | | Q _{gs} | Gate to Source Gate Charge | $V_{DS} = 400V, I_{D} = 5A$ | | - | 3 | - | nC | | Q _{gd} | Gate to Drain "Miller" Charge | V _{GS} = 10V (Note 4, 5) | | - | 5 | - | nC | # **Switching Characteristics** | t _{d(on)} | Turn-On Delay Time | | | - | 14 | 38 | ns | |---------------------|---------------------|---------------------------|-------------|---|----|----|----| | t _r | Turn-On Rise Time | $V_{DD} = 250V, I_D = 5A$ | | - | 21 | 52 | ns | | t _{d(off)} | Turn-Off Delay Time | $R_G = 25\Omega$ | | - | 27 | 64 | ns | | t _f | Turn-Off Fall Time | | (Note 4, 5) | 1 | 20 | 50 | ns | ### **Drain-Source Diode Characteristics** | Is | Maximum Continuous Drain to Source Diode Forward Current | | | - | - | 3 | Α | |-----------------|--|--|----------|---|----|-----|----| | I _{SM} | Maximum Pulsed Drain to Source Diode Forward Current | | | - | - | 12 | Α | | V_{SD} | Drain to Source Diode Forward Voltage | $V_{GS} = 0V, I_{SD} = 3A$ | | - | - | 1.6 | V | | t _{rr} | Reverse Recovery Time | V _{GS} = 0V, I _{SD} = 5A | | - | 36 | - | ns | | Q _{rr} | Reverse Recovery Charge | $dI_F/dt = 100A/\mu s$ | (Note 4) | ı | 33 | - | nC | - **Notes:**1: Repetitive Rating: Pulse width limited by maximum junction temperature 2: L = 61 mH, I_{AS} = 3A, V_{DD} = 50V, R_G = 25Ω, Starting T_J = 25°C 3: I_{SD} ≤ 3A, di/dt ≤ 200A/µs, V_{DD} ≤ BV_{DSS}, Starting T_J = 25°C 4: Pulse Test: Pulse width ≤ 300µs, Duty Cycle ≤ 2% 5: Essentially Independent of Operating Temperature Typical Characteristics # **Typical Performance Characteristics** Figure 1. On-Region Characteristics Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage Figure 5. Capacitance Characteristics Figure 2. Transfer Characteristics Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature Figure 6. Gate Charge Characteristics # **Typical Performance Characteristics** (Continued) Figure 7. Breakdown Voltage Variation vs. Temperature 100μs I_D, Drain Current [A] 1ms 10ms DC Operation in This Area is Limited by R DS(on) 0.1 *Notes: 1. $T_C = 25^{\circ}C$ 2. T_{.1} = 150°C 3. Single Pulse 0.01 100 1000 10 V_{DS}, Drain-Source Voltage [V] Figure 8. Maximum Safe Operating Area Figure 9. Maximum Drain Current vs. Case Temperature Figure 10. Transient Thermal Response Curve # **Gate Charge Test Circuit & Waveform** # **Resistive Switching Test Circuit & Waveforms** # **Unclamped Inductive Switching Test Circuit & Waveforms** ### Peak Diode Recovery dv/dt Test Circuit & Waveforms # **Mechanical Dimensions** # D-PAK LAND PATTERN RECOMMENDATION - NOTES: UNLESS OTHERWISE SPECIFIED A) ALL DIMENSIONS ARE IN MILLIMETERS. B) THIS PACKAGE CONFORMS TO JEDEC, TO-252, ISSUE C, VARIATION AA & AB, DATED NOV. 1999. C) DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994. D) HEAT SINK TOP EDGE COULD BE IN CHAMFERED CORNERS OR EDGE PROTRUSION. E) DIMENSIONS L3,D,E1&D1 TABLE: [OPTION ART | OPTION ART] | 5.14.E.145.0.145 E0,5,E.100 | | | | | | | |-----------------------------|----|-----------|-----------|--|--|--| | | | OPTION AA | OPTION AB | | | | | | L3 | 0.89-1.27 | 1.52-2.03 | | | | | | D | 5.97-6.22 | 5.33-5.59 | | | | | | E1 | 4.32 MIN | 3.81 MIN | | | | | | D1 | 5.21 MIN | 4.57 MIN | | | | F) PRESENCE OF TRIMMED CENTER LEAD IS OPTIONAL. **Dimensions in Millimeters** #### **TRADEMARKS** The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. Build it Now™ CorePLUS™ $CROSSVOLT^{TM}$ CTL™ Current Transfer Logic™ EcoSPARK® EZSWITCH™ * Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT[®] $\mathsf{FAST}^{\circledR}$ FastvCore™ FlashWriter® * FPS™ FRFET® Global Power ResourceSM Green FPS™ Green FPS™ e-Series™ GTO™ i-l o™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFFT™ MicroPak™ MillerDrive™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR® PDP-SPM™ Power220® Power247® POWEREDGE® Power-SPM™ $\mathsf{PowerTrench}^{\mathbb{R}}$ Programmable Active Droop™ QFET® QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™ SPM[®] STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ SYSTEM ® The Power Franchise® p wer franchise TinvBoost™ TinyBuck™ $\mathsf{TinyLogic}^{\mathbb{B}}$ TINYOPTO™ TinyPower™ TinvPWM™ TinyWire™ µSerDes™ UHC® Ultra FRFET™ UniFET™ VCX^{TM} * EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor. #### **DISCLAIMER** FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. #### As used herein: - 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. - 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. #### **PRODUCT STATUS DEFINITIONS** #### **Definition of Terms** | Datasheet Identification | Product Status | Definition | |--------------------------|------------------------|--| | Advance Information | Formative or In Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | Preliminary | First Production | This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. | | No Identification Needed | Full Production | This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. | | Obsolete | Not In Production | This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. | | | | Rev 133 | FDD5N50U Rev. A www.fairchildsemi.com 8