5-V Low-Drop Fixed-Voltage Regulator

ILE4264G

ILE 4264 G is a 5-V low-drop fixed-voltage regulator in an SOT-223 package. The IC regulates an input voltage $V_{\rm I}$ in the range 5.5 V < $V_{\rm I}$ < 45 V to $V_{\rm Qrated}$ = 5.0 V. The maximum output current is more than 120 mA. This IC is shortcircuit-proof and features temperature protection that disables the circuit at overtemperature.

Features:

- □ Output voltage tolerance ≤ ± 2 %
- □ Low-drop voltage
- □ Very low current consumption
- □ Overtemperature protection
- □ Short-circuit proof
- □ Suitable for use in automotive electronics
- □ Reverse polarity.

Dimensioning Information on External Components

The input capacitor C_i is necessary for compensating line influences. Using a resistor of approx. 1 Ω in series with C_i , the oscillating of input inductivity and input capacitance can be clamped. The output capacitor $C_{\rm Q}$ is necessary for the stability of the regulating circuit. Stability is guaranteed at values $C_{\rm Q} \ge 10 \, \mu \rm F$ and an ESR $\le 10 \, \Omega$ within the operating temperature range.

Pin Definitions and Functions

Pin Symbol		Function		
1	И	Input voltage; block to ground directly on IC with ceramic capacitor		
2, 4	GND	Ground		
3	<i>V</i> _Q	5-V output voltage ; block to ground with ≥ 10-μF Ω capacitor, ESR < 10 Ω		

Circuit Description

The control amplifier compares a reference voltage, which is kept highly precise by resistance adjustment, to a voltage that is proportional to the output voltage and drives the base of the series transistor via a buffer. Saturation control, working as a function of load current, prevents any over-saturation of the power element. The IC is additionally protected against overload, overtemperature and reverse polarity.

Pin Configuration (top view)

Absolute Maximum Ratings $T_{\rm j}$ = -40 to 150 °C

Parameter	Symbol	Limit Values		Unit	Notes			
raiametei	Syllibol	min.	max	Offic	Notes			
Input								
Input voltage	V_1	-42	45	V	_			
Input current	1	_	_	_	limited internally			
Output								
Output voltage	V _Q	-1	16	V	_			
Output current	I _Q	_	_	_	limited internally			
Ground								
Current	I _{GND}	50	_	mA	_			
Temperatures								
Junction temperature	T _j	_	150	°C	-			
Storage temperature	\mathcal{T}_{stg}	-50	150	°C	_			
Operating Range								
Input voltage	V _i	5.5	45	V	_			
Junction temperature	T _j	-40	150	°C	_			
Thermal Resistances								
System-air	R _{th SA}	_	100	K/W	soldered in			
System-case	R _{th SC}	_	25	K/W	_			

Block Diagram

Characteristics

 $V_{\rm I}$ = 13.5 V; – 40 °C \leq $T_{\rm J} \leq$ 125 °C, unless specified otherwise

_	Symbol	Limit Values				
Parameter		min	Тур	Max	Unit	Test Condition
Output voltage	V_{Q}	4.9	5.0	5.1	V	5 mA ≤ I _Q ≤ 100 mA
						6 V≤ V _I ≤ 28 V
Output-current limiting	IQ	120	150	_	mA	_
Current consumption $I_{q} = I_{l} - I_{Q}$	I _q	_	_	400	μА	I _Q = 1 mA
Current consumption $I_{q} = I_{l} - I_{Q}$	I _q	_	10	15	mA	I _Q = 100 mA
Drop voltage	$V_{ m dr}$	_	0.25	0.5	V	$I_{\rm Q}$ = 100 mA ₁₎
Load regulation	ΔV_{Q}	_	_	40	mV	I _Q = 5 to 100 mA
						V _I = 6 V
Supply-voltage regulation	ΔV_{Q}	_	15	30	mV	$V_{\rm I}$ = 6 to 28 V $I_{\rm Q}$ = 5 mA
Supply voltage suppression	SVR	_	54	_	dB	$f_{\rm r}$ = 100 Hz $V_{\rm r}$ = 0.5 Vpp

Application Circuit

Drop Voltage V_{Dr} versus Output Current I_{Q}

Current Consumption $I_{
m q}$ versus Input Voltage $V_{
m i}$

Current Consumption Iq versus Output Current I_Q

Output Voltage V_Q versus Temperature T_J

Current Consumption Iq versus Output Current I_Q

Output Current I_Q versus Input Voltage Vi

Package Dimensions

P-SOT 223-4-1

