
Rev. 0.3 1/07 Copyright © 2007 by Silicon Laboratories AN236

AN236

INTEGRATING IAR 8051 TOOLS INTO THE
SIL ICON LABORATORIES IDE
1. Introduction
This application note describes how to integrate the IAR
8051 Tools into the Silicon Laboratories IDE (Integrated
Development Environment). Integration provides an
efficient development environment with compose, edit,
build, download and debug operations integrated in the
same program.

2. Key Points
The Intel OMF-51 absolute object file generated by
the IAR 8051 tools enables source-level debug from
the Silicon Laboratories IDE.
Once IAR Tools are integrated into the IDE, they are
called by simply pressing the “Assemble/Compile
Current File” button or the “Build/Make Project”
button.
See the included software, AN236SW, for an
example using the IAR tools.
Information in this application note applies to
Version 2.90 and later of the Silicon Labs IDE and
Version 4.05 and later of the IAR 8051 Tools.

3. Create a Project in the Silicon
Laboratories IDE

A project is necessary in order to link assembly files
created by the compiler and build an absolute “OMF-51”
output file. Follow these steps to create a project:
1. Under the “Project” menu, select “Add Files to

Project...”. Select the “C” source files that you want
to add, and click “Open”. Continue adding files until
all project files have been added.

2. To add files to the build process, right-click on the file
name in the “Project Window”, and select “Add
filename to build”.

3. Under the “Project” menu, select “Save Project
As...”. Enter a project work space name, and click
“Save”.

4. Configure the Tool Chain
Integration Dialog

Under the “Project” menu, select “Tool Chain
Integration” to bring up the dialog box shown below.
First, select “IAR” from the “Select Tool Vendor” drop-
down list. Next, define the IAR assembler, compiler, and
linker as shown in the following sections.

The IDE will first look in the registry for the installed path
to the IAR Embedded Workbench's assembler,
compiler, and linker; otherwise, the default locations are
as follows:
assembler: “C:\Program Files\IAR Systems\Embedded
Workbench 4.05\8051\bin\a8051.exe”
compiler: “C:\Program Files\IAR Systems\Embedded
Workbench 4.05\8051\bin\icc8051.exe”
linker: “C:\Program Files\IAR Systems\Embedded
Workbench 4.05\common\bin\xlink.exe”

4.1. Assembler Definition
1. Under the “Assembler” tab, if the assembler

executable is not already defined, click the browse
button next to the “Executable:” text box, and locate
the assembler executable.

2. Enter any additional command line flags directly in
the “Command Line Flags” box.

3. See the following figure for the “Assembler” tab with
the default IAR settings.

AN236

2 Rev. 0.3

4.2. Compiler Definition
1. Under the “Compiler” tab, if the compiler executable

is not already defined, click the browse button next
to the “Executable:” text box, and locate the compiler
executable.

2. Enter any additional command line flags directly in
the “Command Line Flags” box.

3. On the IAR Compiler tab, there is a Customize
button. The user can select this button for the IAR
Custom Build dialog to appear. The user can select
options from this dialog to help customize the build
of their project. The compiler and linker command
line will update as the selections are made.

4. See the following figure for the “Compiler” tab with
the default IAR settings.

4.3. Linker Definition
1. Under the “Linker” tab, if the linker executable is not

already defined, click the browse button next to the
“Executable:” text box, and locate the linker
executable.

2. Enter any additional command line flags directly in
the “Command line flags” box.

3. See the following figure for the “Linker” tab with the
default IAR settings.

AN236

Rev. 0.3 3

5. Target Build Configuration
Under the “Project” menu, select “Target Build
Configuration” to bring up the dialog box shown below.

5.1. Output Filename
To customize a default filename or to create a new
filename, click the browse button next to the “Absolute
OMF file name:” edit box. Select a path, and enter an
output filename with a “.a51” extension (e.g.,
blinky.a51).

5.2. Project Build Definition
Click the Customize button to bring up the “Project Build
Definition” window shown below. This window allows
selection of the files to be included in the build process.
Although default assemble and compile selections will
be made, ensure that all files have been correctly
included in the build process. Under each tab, add files
to assemble or compile by selecting the desired file and
clicking the “Add” button. Files are removed in the same
manner.

5.3. Additional Options
1. If the “Enable automatic save for project files before

build.” box is checked, all files included in the project
will be automatically saved when the “Build/Make
project” button is pressed.

2. If the “Enable automatic connect/download after
build.” box is checked, the project will be
automatically downloaded to the target board when
the “Build/Make project” button is pressed.

3. If the “Run to main() on code download.” box is
checked, the target board will halt at the first line in
main() when the “Download code” button is pressed.

AN236

4 Rev. 0.3

6. Building the Project
Blinky.c is the one example included with the IDE. The
header files are IAR header files and can be found in
the "..\IAR Systems\Embedded Workbench
4.05\8051\inc" folder.
1. After saving all files that have been edited, the

previous revisions will be saved in backup files.
Backups are saved as the name of the file with the
extension #1, #2, #3, and so on up to the number of
backups (N) created and available. “#1” being the
most recent, and “N” being the least recent.

2. Click the “Assemble/Compile current file” button to
compile just the current file.

3. Click the “Build/Make project” button to compile and
link all the files in the project.

4. Review the errors and warnings generated during
the build process located in the “Build” tab of the
Output window (typically found at the bottom of the
screen). Double-clicking on an error that is
associated with a line number will automatically
move the cursor to the proper line number in the
source file that generated the error.

7. IAR Considerations
The considerations for IAR are as follows:

Silicon Laboratories header files will not compile if
they are included in the project. The project must
use IAR header files for the specific target board.
The compiler generates an “r51” extension object
file. (ex. Blink.r51).

Once you have updated your Embedded Workbench
tools to Version 7.10 or greater, you will need to
override the configuration file named lnk51ew.xcl
located on your computer in the folder "..\IAR
Systems\Embedded Workbench 4.05\8051\config”. The
updated file is included with the AN236SW software
example.

AN236

Rev. 0.3 5

8. Source File Example
//--
// Blinky.c
//--
// Copyright 2005 Silicon Laboratories, Inc.
//
// AUTH: SH
// DATE: 18 MAY 05
//
// This program flashes the green LED on the C8051F124 target board
// using the interrupt handler for Timer3.
// Target: C8051F12x
//
// Tool chain: IAR 'C' Compiler
//

//--
// Includes
//--
#include <ioC8051F124.h> //IAR include file

//---
// 16-bit SFR Definitions for 'F12x
//---
unsigned char RCAP3 = 0xCA; // Timer3 reload value
unsigned char TMR3 = 0xCC; // Timer3 counter

//--
// Global CONSTANTS
//--
#define SYSCLK 3062500 // approximate SYSCLK frequency in Hz

//--
// Function PROTOTYPES
//--
void PORT_Init (void);
void Timer3_Init (int counts);
__interrupt void Timer3_ISR (void);

//--
// MAIN Routine
//--
void main (void) {
 // disable watchdog timer
 WDTCN = 0xde;
 WDTCN = 0xad;

 SFRPAGE = 0x0F; // Switch to configuration page
 PORT_Init ();

 SFRPAGE = 0x01; // Switch to Timer 3 page
 Timer3_Init (SYSCLK / 12 / 10); // Init Timer3 to generate interrupts

 // at a 10 Hz rate.
 IE = 0x90;

 SFRPAGE = 0x00; // Page to sit in for now

AN236

6 Rev. 0.3

 while (1) { // spin forever
 }
}

//--
// PORT_Init
//--
//
// Configure the Crossbar and GPIO ports
//
void PORT_Init (void)
{
 XBR2 = 0x40; // Enable crossbar and weak pull-ups
 P1MDOUT |= 0x40; // enable P1.6 (LED) as push-pull output
}

//--
// Timer3_Init
//--
//
// Configure Timer3 to auto-reload and generate an interrupt at interval
// specified by <counts> using SYSCLK/12 as its time base.
//
//
void Timer3_Init (int counts)
{
 TMR3CN = 0x00; // Stop Timer3; Clear TF3;
 // use SYSCLK/12 as timebase
 RCAP3 = -counts; // Init reload values
 TMR3 = 0xff; // set to reload immediately
 EIE2 |= 0x01; // enable Timer3 interrupts
 TMR3CN |= 0x04; // start Timer3
}

//--
// Interrupt Service Routines
//--

//--
// Timer3_ISR
//--
// This routine changes the state of the LED whenever Timer3 overflows.
//
// NOTE: The SFRPAGE register will automatically be switched to the Timer 3 Page
// When an interrupt occurs. SFRPAGE will return to its previous setting on exit
// from this routine.
#pragma vector=0x73
__interrupt void Timer3_ISR (void)
{
 TMR3CN &= ~(0x80); // clear TF3
 P1 = ~P1; // change state of LED
}

AN236

Rev. 0.3 7

DOCUMENT CHANGE LIST

Revision 0.1 to Revision 0.2
Updated "7. IAR Considerations" on page 4.

Revision 0.2 to Revision 0.3
Updated paths to IAR tools to support Version 4.05.
Updated supported version of the IDE to
Version 2.90.
Added bullet on front page to specify supported
toolset versions.

AN236

8 Rev. 0.3

CONTACT INFORMATION
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Email: MCUinfo@silabs.com
Internet: www.silabs.com

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

