DATA SHEET # **BIPOLAR ANALOG INTEGRATED CIRCUIT** # μ PC3232TB # 5 V, SILICON GERMANIUM MMIC MEDIUM OUTPUT POWER AMPLIFIER #### **DESCRIPTION** The μ PC3232TB is a silicon germanium (SiGe) monolithic integrated circuit designed as IF amplifier for DBS tuners. This IC is manufactured using our 50 GHz f_{max} UHS2 (<u>U</u>Itra <u>High Speed Process</u>) SiGe bipolar process. #### **FEATURES** Low current : Icc = 26.0 mA TYP. Medium output power Po (sat) = +15.5 dBm TYP. @ f = 1.0 GHz : Po (sat) = +12.0 dBm TYP. @ f = 2.2 GHz • High linearity : Po (1 dB) = +11.0 dBm TYP. @ f = 1.0 GHz : Po(1 dB) = +8.5 dBm TYP. @ f = 2.2 GHz Power gain : G_P = 32.8 dB MIN. @ f = 1.0 GHz : $G_P = 33.5 \text{ dB MIN}$. @ f = 2.2 GHz • Gain flatness : $\triangle G_P = 1.0 \text{ dB TYP.}$ @ f = 1.0 to 2.2 GHz Noise figure : NF = 4 dB TYP. @ f = 1.0 GHz : NF = 4.1 dB TYP. @ f = 2.2 GHz • Supply voltage : Vcc = 4.5 to 5.5 V • Port impedance : input/output 50 Ω #### **APPLICATIONS** · IF amplifiers in LNB for DBS converters etc. #### **ORDERING INFORMATION** | Part Number | Order Number | Package | Marking | Supplying Form | |--------------|----------------|----------------------|---------|---| | μPC3232TB-E3 | μPC3232TB-E3-A | 6-pin super minimold | C3S | • Embossed tape 8 mm wide | | | | (Pb-Free) | | Pin 1, 2, 3 face the perforation side of the tape | | | | | | Qty 3 kpcs/reel | Remark To order evaluation samples, please contact your nearby sales office Part number for sample order: μ PC3232TB Caution Observe precautions when handling because these devices are sensitive to electrostatic discharge. The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information. #### PIN CONNECTIONS PRODUCT LINE-UP OF 5 V-BIAS SILICON MMIC MEDIUM OUTPUT POWER AMPLIFIER (Ta = $+25^{\circ}$ C, f = 1 GHz, Vcc = Vout = 5.0 V, Zs = ZL = 50 Ω) | Part No. | Po (sat)
(dBm) | G _P
(dB) | NF
(dB) | lcc
(mA) | Package | Marking | |-----------|-------------------|------------------------|------------|-------------|----------------------|---------| | μPC2708TB | +10.0 | 15.0 | 6.5 | 26 | 6-pin super minimold | C1D | | μPC2709TB | +11.5 | 23.0 | 5.0 | 25 | | C1E | | μPC2710TB | +13.5 | 33.0 | 3.5 | 22 | | C1F | | μPC2776TB | +8.5 | 23.0 | 6.0 | 25 | | C2L | | μPC3223TB | +12.0 | 23.0 | 4.5 | 19 | | C3J | | μPC3225TB | +15.5 Note | 32.5 Note | 3.7 Note | 24.5 | | СЗМ | | μPC3226TB | +13.0 | 25.0 | 5.3 | 15.5 | | C3N | | μPC3232TB | +15.5 | 32.8 | 4.0 | 26 | | C3S | **Note** μ PC3225TB is f = 0.95 GHz **Remark** Typical performance. Please refer to **ELECTRICAL CHARACTERISTICS** in detail. ## ABSOLUTE MAXIMUM RATINGS | Parameter | Symbol | Conditions | Ratings | Unit | |-------------------------------|--------|----------------------------------|--------------|------| | Supply Voltage | Vcc | T _A = +25°C | 6.0 | V | | Total Circuit Current | Icc | T _A = +25°C | 45 | mA | | Power Dissipation | P□ | T _A = +85°C No | e 270 | mW | | Operating Ambient Temperature | TA | | -40 to +85 | °C | | Storage Temperature | Tstg | | -55 to +150 | °C | | Input Power | Pin | T _A = +25°C | 0 | dBm | **Note** Mounted on double-sided copper-clad $50 \times 50 \times 1.6$ mm epoxy glass PWB #### RECOMMENDED OPERATING RANGE | Parameter | Symbol | Conditions | MIN. | TYP. | MAX. | Unit | |-------------------------------|--------|------------|------|------|------|------| | Supply Voltage | Vcc | | 4.5 | 5.0 | 5.5 | ٧ | | Operating Ambient Temperature | TA | | -40 | +25 | +85 | °C | 3 # ELECTRICAL CHARACTERISTICS (TA = +25°C, Vcc = Vout = 5.0 V, Zs = ZL = 50 Ω) | Parameter | Symbol | Test Conditions | MIN. | TYP. | MAX. | Unit | |---|--------------------|---|------|-------|------|------| | Circuit Current | lcc | No input signal | 20 | 26 | 32 | mA | | Power Gain 1 | G _P 1 | $f = 0.25 \text{ GHz}, P_{in} = -35 \text{ dBm}$ | 29 | 31.5 | 34 | dB | | Power Gain 2 | G _P 2 | f = 1.0 GHz, P _{in} = -35 dBm | 30 | 32.8 | 35.5 | | | Power Gain 3 | G _P 3 | f = 1.8 GHz, P _{in} = -35 dBm | 31 | 33.8 | 37 | | | Power Gain 4 | G _P 4 | f = 2.2 GHz, Pin = -35 dBm | 30.5 | 33.5 | 36.5 | | | Power Gain 5 | G _P 5 | f = 2.6 GHz, P _{in} = -35 dBm | 29 | 32.2 | 35.5 | | | Power Gain 6 | G _P 6 | $f = 3.0 \text{ GHz}, P_{in} = -35 \text{ dBm}$ | 27 | 30.7 | 34 | | | Gain Flatness | ⊿Gp | $f = 1.0 \text{ to } 2.2 \text{ GHz}, P_{in} = -35 \text{ dBm}$ | - | 1.0 | _ | dB | | K factor 1 | K1 | $f = 1.0 \text{ GHz}, P_{in} = -35 \text{ dBm}$ | - | 1.3 | - | 1 | | K factor 2 | K2 | f = 2.2 GHz, P _{in} = -35 dBm | - | 1.9 | - | 1 | | Saturated Output Power 1 | Po (sat) 1 | f = 1.0 GHz, Pin = 0 dBm | +13 | +15.5 | _ | dBm | | Saturated Output Power 2 | Po (sat) 2 | f = 2.2 GHz, P _{in} = -5 dBm | +9.5 | +12 | - | | | Gain 1 dB Compression Output Power 1 | Po (1 dB) 1 | f = 1.0 GHz | +8 | +11 | _ | dBm | | Gain 1 dB Compression Output Power 2 | Po (1 dB) 2 | f = 2.2 GHz | +6 | +8.5 | - | | | Noise Figure 1 | NF1 | f = 1.0 GHz | - | 4 | 4.8 | dB | | Noise Figure 2 | NF2 | f = 2.2 GHz | - | 4.1 | 4.9 | | | Isolation 1 | ISL1 | f = 1.0 GHz, Pin = -35 dBm | 36 | 41 | _ | dB | | Isolation 2 | ISL2 | f = 2.2 GHz, Pin = -35 dBm | 38 | 45 | _ | | | Input Return Loss 1 | RLin1 | f = 1.0 GHz, Pin = -35 dBm | 9.5 | 13 | _ | dB | | Input Return Loss 2 | RLin2 | f = 2.2 GHz, Pin = -35 dBm | 10 | 14.5 | _ | | | Output Return Loss 1 | RLout1 | f = 1.0 GHz, Pin = -35 dBm | 12 | 15.5 | _ | dB | | Output Return Loss 2 | RLout2 | f = 2.2 GHz, Pin = -35 dBm | 12 | 15 | _ | | | Input 3rd Order Distortion Intercept Point 1 | IIP₃1 | f1 = 1 000 MHz, f2 = 1 001 MHz | - | -9 | - | dBm | | Input 3rd Order Distortion Intercept Point 2 | IIP ₃ 2 | f1 = 2 200 MHz, f2 = 2 201 MHz | - | -15.5 | _ | | | Output 3rd Order Distortion Intercept Point 1 | OIP₃1 | f1 = 1 000 MHz, f2 = 1 001 MHz | - | +23.5 | _ | dBm | | Output 3rd Order Distortion Intercept Point 2 | OIP ₃ 2 | f1 = 2 200 MHz, f2 = 2 201 MHz | - | +18 | _ | | | 2nd Order Intermodulation Distortion | IM ₂ | f1 = 1 000 MHz, f2 = 1 001 MHz,
P _{out} = -5 dBm/tone | - | 50 | - | dBc | | 2nd Harmonic | 2f0 | f0 = 1.0 GHz, P _{out} = -15 dBm | - | 70 | _ | dBc | #### **TEST CIRCUIT** The application circuits and their parameters are for reference only and are not intended for use in actual design-ins. # COMPONENTS OF TEST CIRCUIT FOR MEASURING ELECTRICAL CHARACTERISTICS | | Туре | Value | |--------|------------------------|----------| | R1 | Chip Resistance | 560 Ω | | L1 | Chip Inductor | 47 nH | | L2 | Chip Inductor | 68 nH | | C1 | Chip Capacitor | 100 pF | | C2 | Chip Capacitor | 33 pF | | C3, C4 | Chip Capacitor | 1 000 pF | | C5 | Chip Capacitor | 39 pF | | C6 | Feed-through Capacitor | 1 000 pF | #### INDUCTOR FOR THE OUTPUT PIN The internal output transistor of this IC, to output medium power. To supply current for output transistor, connect an inductor between the Vcc pin (pin 3) and output pin (pin 1). Select inductance, as the value listed above. The inductor has both DC and AC effects. In terms of DC, the inductor biases the output transistor with minimum voltage drop to output enable high level. In terms of AC, the inductor makes output-port impedance higher to get enough gain. In this case, large inductance and Q is suitable (Refer to the following page). #### CAPACITORS FOR THE Vcc, INPUT AND OUTPUT PINS Capacitors of 1 000 pF are recommendable as the bypass capacitor for the Vcc pin and the coupling capacitors for the input and output pins. The bypass capacitor connected to the Vcc pin is used to minimize ground impedance of Vcc pin. So, stable bias can be supplied against Vcc fluctuation. The coupling capacitors, connected to the input and output pins, are used to cut the DC and minimize RF serial impedance. Their capacitances are therefore selected as lower impedance against a 50 Ω load. The capacitors thus perform as high pass filters, suppressing low frequencies to DC. To obtain a flat gain from 100 MHz upwards, 1 000 pF capacitors are used in the test circuit. In the case of under 10 MHz operation, increase the value of coupling capacitor such as 10 000 pF. Because the coupling capacitors are determined by equation, $C = 1/(2 \pi Rfc)$. #### ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD C6: Feed-through Capacitor #### **COMPONENT LIST** | | Value | Size | |--------|----------|---------------------------| | R1 | 560 Ω | 1005 | | L1 | 47 nH | 1005 | | L2 | 68 nH | 1005 | | C1 | 100 pF | 1608 | | C2 | 33 pF | 1608 | | C3, C4 | 1 000 pF | 1005 | | C5 | 39 pF | 1608 | | C6 | 1 000 pF | Feed-through
Capacitor | #### Notes - 1. $19 \times 21.46 \times 0.51$ mm double sided copper clad RO4003C (Rogers) board. - 2. Back side: GND pattern - 3. Au plated on pattern - 4. ○O: Through holes - 5. L1, L2: FDK's products #### TYPICAL CHARACTERISTICS (TA = +25°C, Vcc = 5.0 V, Zs = ZL = 50 Ω , unless otherwise specified) #### CIRCUIT CURRENT vs. SUPPLY VOLTAGE # CURCUIT CURRENT vs. OPERATING AMBIENT TEMPERATURE POWER GAIN vs. FREQUENCY ISOLATION vs. FREQUENCY ### INPUT RETURN LOSS vs. FREQUENCY **OUTPUT RETURN LOSS vs. FREQUENCY** **Remark** The graphs indicate nominal characteristics. #### **OUTPUT POWER vs. INPUT POWER** #### **OUTPUT POWER vs. INPUT POWER** NOISE FIGURE vs. FREQUENCY NOISE FIGURE vs. FREQUENCY **Remark** The graphs indicate nominal characteristics. OUTPUT POWER, 2ND HARMONIC, 3RD HARMONIC vs. INPUT POWER 20 f = 2 200 MHz 10 0 2f0 Output Power Pout (dBm) 2nd Harmonic 2f0 (dBc) 3rd Harmonic 3f0 (dBc) Po -10 -20 -30 -40 -50 3f0 -60 -70 -80 -40 -30 Input Power Pin (dBm) -20 -10 **Remark** The graphs indicate nominal characteristics. _90 -60 -50 #### S-PARAMETERS (TA = +25°C, VDD = Vcc = 5.0 V, Pin = -35 dBm) #### S₁₁-FREQUENCY #### S22-FREQUENCY 10 Data Sheet PU10597EJ01V0DS #### **S-PARAMETERS** S-parameters/Noise parameters are provided on our web site in a form (S2P) that enables direct import to a microwave circuit simulator without keyboard input. Click here to download S-parameters. $[\mathsf{RF} \ \mathsf{and} \ \mathsf{Microwave}] \to [\mathsf{Device} \ \mathsf{Parameters}]$ URL http://www.ncsd.necel.com/microwave/index.html 11 ### **PACKAGE DIMENSIONS** # 6-PIN SUPER MINIMOLD (UNIT: mm) #### **NOTES ON CORRECT USE** - (1) Observe precautions for handling because of electro-static sensitive devices. - (2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation). All the ground terminals must be connected together with wide ground pattern to decrease impedance difference. - (3) The bypass capacitor should be attached to the Vcc line. - (4) The inductor (L) must be attached between Vcc and output pins. The inductance value should be determined in accordance with desired frequency. - (5) The DC cut capacitor must be attached to input and output pin. #### RECOMMENDED SOLDERING CONDITIONS This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office. | Soldering Method | Soldering Conditions | | Condition Symbol | |------------------|---|---|------------------| | Infrared Reflow | Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass) | : 260°C or below
: 10 seconds or less
: 60 seconds or less
: 120±30 seconds
: 3 times
: 0.2%(Wt.) or below | IR260 | | Wave Soldering | Peak temperature (molten solder temperature) Time at peak temperature Preheating temperature (package surface temperature) Maximum number of flow processes Maximum chlorine content of rosin flux (% mass) | : 260°C or below
: 10 seconds or less
: 120°C or below
: 1 time
: 0.2%(Wt.) or below | WS260 | | Partial Heating | Peak temperature (terminal temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (% mass) | : 350°C or below
: 3 seconds or less
: 0.2%(Wt.) or below | HS350 | Caution Do not use different soldering methods together (except for partial heating). - The information in this document is current as of May, 2006. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information. - No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document. - NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others. - Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information. - While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features. - NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific". The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application. - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support). - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc. The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application. #### (Note) - (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries. - (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above). M8E 02.11-1 NEC μ PC3232TB #### ▶ For further information, please contact #### **NEC Compound Semiconductor Devices Hong Kong Limited** E-mail: contact@ncsd-hk.necel.com Hong Kong Head Office TEL: +852-3107-7303 FAX: +852-3107-7309 Taipei Branch Office TEL: +886-2-8712-0478 FAX: +886-2-2545-3859 Korea Branch Office TEL: +82-2-558-2120 FAX: +82-2-558-5209 #### NEC Electronics (Europe) GmbH http://www.eu.necel.com/ TEL: +49-211-6503-0 FAX: +49-211-6503-1327 California Eastern Laboratories, Inc. http://www.cel.com/ TEL: +1-408-988-3500 FAX: +1-408-988-0279 Compound Semiconductor Devices Division NEC Electronics Corporation URL: http://www.ncsd.necel.com/