tyco

AXICOM

Electronics

The Best Relaytion

FP2 Relay

2 pole telecom / signal relay
Through Hole Type (THT)
Polarized.
Relay types: non-latching with 1 coil
latching with 1 coil
latching with 2 coils

Features

- Telecom / signal relay (dry circuit, test access, ringing)
- Slim line $14 \times 9 \mathrm{~mm}, 0.550 \times 0.354$ inch
- Switching current 2 A
- 2 changeover contacts (2 form C / DPDT)
- Bifurcated contacts
- High sensitivity results in low nominal power consumption 80 mW for high sensitive, 140 mW for sensitive version
- High mechanical shock resistance up to 300 G functional
up to 1500 G survival

Typical applications

- Communications equipment

Linecard application - analog, ISDN, xDSL, PABX Voice over IP

- Office and business equipment
- Measurement and control equipment
- Consumer electronics

Set top boxes, HiFi

- Medical equipment

Dimensions

	THT	
	mm	inch
L	14.02 ± 0.08	0.574 ± 0.008
W	9.02 ± 0.08	0.035 ± 0.003
H	5 ± 0.1	0.196 ± 0.004
T	$3.2+0.3$	$0.125+0.011$
T1	N/A	N/A
T2	7.62 ± 0.1	0.3 ± 0.004
Tw	0.5	0.020
S	$0.25+0.05$	$0.009+0.002$

THT Version

Mounting hole layout
View onto the component side of the PCB (top view)

Basic grid 2.54 mm

Terminal assignment
Relay-top view

Non-latching type, not energized condition

Latching type,
reset condition

latching, 2 coils reset condition

Coil Data (values at $23^{\circ} \mathrm{C}$)

Nominal voltage Unom	Operate/set voltage range		Release/ reset voltage Minimum	Nominal power consumption	Resistance	Relay Code
	Minimum voltage $U_{\text {I }}$	Maximum voltage $U_{\text {II }}$				
Vdc	Vdc	Vdc	Vdc	mW	$\Omega / \pm 10 \%$	

non-latching
1 coil

3	2.1	6.8	0.30	140	64	D 3006
4.5	3.15	10.3	0.45	140	145	D 3004
5	3.5	11.4	0.50	140	178	D 3009
6	4.2	13.7	0.60	140	257	D 3005
9	6.3	20.4	0.90	140	574	D 3010
12	8.4	27.3	1.20	140	1028	D 3002
24	16.8	45.7	2.40	200	2880	D 3012
48	33.6	67.5	4.80	300	7680	D 3013

non-latching 1 coil
high sensitive version

3	2.25	9.0	0.3	80	113	D 3021
4.5	3.38	13.5	0.45	80	253	D 3022
5	3.75	15.0	0.5	80	313	D 3023
6	4.5	18.0	0.6	80	450	D 3024
9	6.75	27.1	0.9	80	1013	D 3025
12	9.00	36.1	1.2	80	1800	D 3026
24	18.00	54.7	2.4	140	4114	D 3027
48	36.00	72.5	4.8	260	8882	D 3028

latching
1 coil

3	2.25	8.1	2.25	100	90	D 3041
4.5	3.375	12.1	3.375	100	203	D 3042
5	3.75	13.5	3.75	100	250	D 3043
6	4.5	16.2	4.50	100	360	D 3044
9	6.75	24.2	6.75	100	810	D 3045
12	9.00	29.0	9.00	100	1440	D 3046
24	18.00	47.5	18.00	150	3840	D 3047

latching
2 coils

3	2.1	5.7	2.1	200	45	D 3061
4.5	3.15	8.6	3.15	200	D 3062	
5	3.5	9.5	3.5	200	101	125
6	4.2	11.4	4.2	200	180	D 3063
9	6.3	17.1	6.3	200	405	D 3065
12	8.4	22.6	8.4	200	720	D 3066
24	16.8	33.7	16.8	200	1920	D 3067

[^0]$U_{1}=\quad$ Minimum voltage at $23^{\circ} \mathrm{C}$ after pre-energizing with nominal voltage without contact current
$U_{\text {II }}=\quad$ Maximum continous voltage at 23°

The operating voltage limits U_{1} and $U_{\text {II }}$ depend on the temperature according to the formula:

$U_{\text {Itamb }}=$	$\mathrm{K}_{1} \cdot U_{123^{\circ} \mathrm{C}}$ and		
$U_{\\| \text {tamb }}=$	$\mathrm{K}_{I I} \cdot U_{\\| 23^{\circ} \mathrm{C}}$		
$t_{\text {amb }}$	$=$ Ambient temperature		
$U_{\text {Itamb }}$	$=$ Minimum voltage at ambient temperature, $\mathrm{t}_{\text {amb }}$		
$U_{\text {II tamb }}$	$=$ Maximum voltage at ambient temperature, $\mathrm{t}_{\text {amb }}$		
$k_{1}, k_{I I}$	$=$ Factors (dependent on temperature), see diagram		

Contact Data

Number of contacts and type	2 changeover contacts
Contact assembly	Bifurcated contacts
Contact material	Silver-nickel, gold-covered
Limiting continuous current at max. ambient temperature	2 A
Maximum switching current	2 A
Maximum swichting voltage	220 Vdc
	250 Vac
Maximum switching capacity	$60 \mathrm{~W}, 62.5 \mathrm{VA}$
Thermoelectric potential	< $10 \mu \mathrm{~V}$
Minimum switching voltage	$100 \mu \mathrm{~V}$
Initial contact resistance / measuring condition: $10 \mathrm{~mA} / 20 \mathrm{mV}$	$<50 \mathrm{~m} \Omega$
```Electrical endurance at contact application O ( }\geq30\textrm{mV}/\geq10\textrm{mA} at cable load open end at 125 Vdc / 0.24 A - 30 W at 250 Vac / 0.25 A-62.5 VA at 24 V / 1.25 A-30 W```	min. $2.5 \times 10^{6}$ operations $\mathrm{min} .2 .0 \times 10^{6}$ operations $\min .1 .0 \times 10^{5}$ operations $\min .1 .0 \times 10^{5}$ operations $\min .3 .0 \times 10^{5}$ operations
Mechanical endurance	typ. $10^{8}$ operations
UL contact ratings	```220 Vdc / 0.24 A-60 W 125 Vdc / 0.24 A - 30 W 250 Vac / 0.25 A - 62.5 VA 125 Vac / 0.5 A-62.5 VA 30 Vdc / 2 A - 60 W```

Insulation

Insulation resistance at 500 VDC	$>10^{9} \Omega$
Dielectric test voltage (1 min)   between coil and contacts   between adjacent contact sets   between open contacts	1000 Vrms
Surge voltage resistance	1000 Vrms
according IEC (10 / $700 \mu \mathrm{~s})$	750 Vrms
between coil and contacts	1500 V
between adjacent contact sets	1500 V
between open contacts	1500 V
according to FCC $68(10 / 160 \mu \mathrm{~s})$	1500 V
between coil and contacts	1500 V
between adjacent contact sets	1500 V


High Frequency Data	
Capacitance   between coil and contacts   between adjacent contact sets   between open contacts	$\max .4 \mathrm{pF}$
max. 1 pF	
max. 1 pF	
RF Characteristics	
Isolation at $100 / 900 \mathrm{MHz}$	
Insertion loss at $100 / 900 \mathrm{MHz}$	$-40.2 \mathrm{~dB} /-22.3 \mathrm{~dB}$
V.S.W.R. at $100 / 900 \mathrm{MHz}$	$-0.03 \mathrm{~dB} /-0.25 \mathrm{~dB}$

## General data

Operate time at $U_{\text {nom }}$ typ. / max.	$3 \mathrm{~ms} / 4 \mathrm{~ms}$
Reset time (latching) at $U_{\text {nom }}$, typ. / max.	$3 \mathrm{~ms} / 4 \mathrm{~ms}$
Release time without diode in parallel (non-latching), typ. / max.	$1 \mathrm{~ms} / 3 \mathrm{~ms}$
Release time with diode in parallel (non-latching), typ. / max.	$3 \mathrm{~ms} / 4 \mathrm{~ms}$
Bounce time at closing contact, typ. / max.	$1 \mathrm{~ms} / 5 \mathrm{~ms}$
Maximum switching rate without load	50 operations/s
Ambient temperature	$-55^{\circ} \mathrm{C} . .+85^{\circ} \mathrm{C}$
Thermal resistance	$<165 \mathrm{~K} / \mathrm{W}$
Maximum permissible coil temperature	$110^{\circ} \mathrm{C}$
Vibration resistance (function)	20 G
Shock resistance, half sinus, 11 ms	10 to 500 Hz
Degree of protection / Environmental protection	150 G (function)
Needle flame test	(damage)
Mounting position	immersion cleanable, IP $67 / \mathrm{RT}$ III
Processing information	application time $20 \mathrm{~s}, \mathrm{no} \mathrm{burning} \mathrm{or} \mathrm{glowing}$
Weight (mass)	any
Resistance to soldering heat	Ultrasonic cleaning is not recommended

All data refers to $23^{\circ} \mathrm{C}$ unless otherwise specified.

## Packing

Tube for THT version-50 relays per stick, 1000 relays per box


## Ordering Information

Relay Code	Tyco   Part Number	Relay Code	Tyco   Part Number
D3002	$0-1462033-5$	D3028	$3-1462033-9$
D3004	$0-1462033-9$	D3041	$4-1462033-0$
D3005	$1-1462033-1$	D3042	$4-1462033-1$
D3006	$1-1462033-3$	D3043	$4-1462033-2$
D3009	$1-1462033-4$	D3044	$4-1462033-3$
D3010	$2-1462033-1$	D3045	$4-1462033-4$
D3012	$2-1462033-2$	D3046	$4-1462033-5$
D3013	$2-1462033-6$	D3061	$4-1462033-6$
D3021	$3-1462033-2$	D3062	$4-1462033-7$
D3022	$3-1462033-3$	D3063	$4-1462033-8$
D3023	$3-1462033-4$	D3064	$4-1462033-9$
D3024	$3-1462033-5$	D3065	$5-1462033-0$
D3025	$3-1462033-6$	D3066	$5-1462033-1$
D3026	$3-1462033-7$	D3067	$5-1462033-4$
D3027	$3-1462033-8$	$5-1462033-6$	

## IM Relays

$4^{\text {th }}$ generation slim line - low profile polarized $2 \mathrm{c} / \mathrm{o}$ telecom relay with bifurcated contacts, available as non latching or latching relay with 1 coil. Nominal voltage range from 1.5 ... 24 V , coil power consumption of $140 \ldots 200 \mathrm{~mW}$, latching relays with 1 coil 100 mW . The IM relay is available as through hole and surface mount type (J-Legs and Gull Wings) and capable to switch loads up to $60 \mathrm{~W} / 62,5 \mathrm{VA}$. Dielectric strength fulfills the Bellcore requirements according GR 1089 ( $2,5 \mathrm{kV}$ $-2 / 10 \mu \mathrm{~s})$ and FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. The IM relay is CECC/IECO approved and certified in accordance with IEC/EN 60950 and UL1950. Dimensions approx. $10 \times 6 \mathrm{~mm}$ board space and 5.65 mm height.

## P2 Relays

$3^{\text {rd }}$ generation polarized 2 c/o telecom relay with bifurcated contacts, available as non latching or latching relay with 1 or 2 coils. Nominal voltage range from $3 \ldots 24 \mathrm{~V}$, coil power consumption 140 mW , latching relays with 1 coil 70 mW . The P2 Relay is available as through hole or surface mount type and capable to switch currents up to 5 A. Dielectric strength fulfills the Bellcore requirements according GR $1089(2,5 \mathrm{kV}-2 / 10 \mu \mathrm{~s})$ and FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. Dimensions approx. $15 \times 7,5 \mathrm{~mm}$ board space and 10 mm height.

## FX Relays

$3^{\text {rd }}$ generation polarized $2 \mathrm{c} /$ o telecom relay with bifurcated contacts, available as non latching or latching relay with 1 coil. Nominal voltage range from 3 ... 48 V , coil power consumption of 80 ... 260 mW for the high sensitive version, $140 \ldots 300 \mathrm{~mW}$ for the standard version, latching relays with 1 coil 100 mW . The FX2 relay is available as through hole type and capable to switch loads up to 60 W/62,5 VA. Dielectric strength fulfills the Bellcore requirements according GR 1089 ( $2,5 \mathrm{kV}$ $-2 / 10 \mu \mathrm{~s})$ and FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. The FX2 is CECC/ IECQ approved and certified in accordance with IEC/EN 60950 and UL1950. Dimensions approx. $15 \times 7,5 \mathrm{~mm}$ board space and $10,7 \mathrm{~mm}$ height.

## FT2 / FU2 Relays

$3^{\text {rd }}$ generation non polarized, non latching $2 \mathrm{c} / \mathrm{o}$ telecom relay with bifurcated contacts. Nominal voltage range from 3 ... 48 V , coil power consumption $200 \ldots 300 \mathrm{~mW}$. Most sensitive 48 V relay. Available as through hole and surface mount type. Dielectric strength fulfills the Bellcore requirements according GR $1089(2,5 \mathrm{kV}-2 / 10 \mu \mathrm{~s})$ and FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. The FT2/FU2 is CECC/IECO approved and certified in accordance with IEC/EN 60950 and UL1950. Dimensions approx. $15 \times 7,5 \mathrm{~mm}$ board space and 10 mm height.

## FP1 Relays

$3^{\text {rd }}$ generation polarized $2 \mathrm{c} / \mathrm{o}$ telecom relay with bifurcated contacts available as non latching or latching relay with 1 or 2 coils. Nominal voltage range from 3 ... 48 V , coil power consumption of 80 ... 260 mW for the high sensitive version, 140... 300 mW for the standard version, latching relays with 1 coil 100 mW .. The FP1 Relay is available as through hole type and capable to switch loads up to 30 W/62,5 VA. Dielectric strength fulfills FCC part 68 (1,5 kV - 10 / $160 \mu \mathrm{~s})$. The FP2 is CECC/IECQ approved. Dimensions approx. $14 \times 9 \mathrm{~mm}$ board space and 5 mm height.

## MT2 / MT4

$2^{\text {nd }}$ generation non polarized, non latching $2 \mathrm{c} / \mathrm{o}$ and $4 \mathrm{c} / \mathrm{o}$ telecom and signal relay with bifurcated contacts. Nominal voltage range from 4.5 ... 48 V , coil power consumption 150/200/300/400 and 550 mW , and 300 mW (MT4). Dielectric strength fulfills the requirements according FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$ for both and the Bellcore requirements according GR 1089 ( $2,5 \mathrm{kV}-2 / 10 \mu \mathrm{~s}$ ) the MT4 only.
Dimensions MT2 approx. $20 \times 10 \mathrm{~mm}$ board space and 11 mm height, MT4 approx. $20 \times 15 \mathrm{~mm}$ board space and 11 mm height.

## D2n Relays

$2^{\text {nd }}$ generation non polarized $2 \mathrm{c} / \mathrm{o}$ relay for telecom and various other applications. Nominal voltage range from 3 ... 48 V , coil power consumption from 150 .... 500 mW . The D2n relay is capable to switch currents up to 3 A . Dielectric strength fulfills the requirements according FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. Dimensions approx. $20 \times 10 \mathrm{~mm}$ board space and $11,5 \mathrm{~mm}$ height.

## P1 Relays

Extremely sensitive, polarized $1 \mathrm{c} / \mathrm{o}$ relay with bifurcated contacts for a wide range of applications, available as non latching or latching relay with 1 or 2 coils. Nominal voltage range from $3 \ldots 24 \mathrm{~V}$, coil power consumption 65 mW , latching relays with 1 coil 30 mW . The P 1 relay is available as through hole or surface mount type and capable to switch currents up to 1 A . Dielectric strength fulfills the requirements according FCC part $68(1,5 \mathrm{kV}-10 / 160 \mu \mathrm{~s})$. Dimensions approx. $13 \times 7,6 \mathrm{~mm}$ board space and 7 mm height for THT or 8 mm height for SMT version.

## W11 Relays

Low cost, non polarized $1 \mathrm{c} /$ o relay for various applications. Nominal voltage range from $3 \ldots 24 \mathrm{~V}$, coil power consumption 450 mW , sensitive versions 200 mW . The W11 relay is capable to switch currents up to 3 A . Dielectric strength 1000 Vrms. Dimensions approx. $15,6 \times 10,6 \mathrm{~mm}$ board space and $11,5 \mathrm{~mm}$ height.

## Reed Relays

High sensitive, non polarized relay for telecom and various other applications, available with 1 n/o, 2 n/o or 1c/o contacts. Nominal voltage range from $5 \ldots 24 \mathrm{~V}$, coil power consumption $50 \ldots 280 \mathrm{~mW}$ for $1 \mathrm{n} / \mathrm{o}$ and $125 \ldots 280 \mathrm{~mW}$ for $2 \mathrm{n} / \mathrm{o}$ or $1 \mathrm{c} / \mathrm{o}$ versions. Reedrelays are available in DIP or SIL housing and capable to switch currents up to 0,5 A. Integrated diode and/or electrostatic shield optional. Dielectric strength 1500 Vdc. Dimensions approx. $19,3 \times 7 \mathrm{~mm}$ board space and 5 ... $7,5 \mathrm{~mm}$ height for DIP or $19,8 \times 5 \mathrm{~mm}$ board space and $7,8 \mathrm{~mm}$ height for SIL version.

## Cradle Relays

Extremely reliable and mature relay family of $1^{\text {st }}$ generation for various signal switching applications. Available as non polarized, polarized / latching and relay with AC coil. The benefit is the possibility of combining various contact sets from 1 up to 6 poles, single and bifurcated contacts, different contact materials with a coil voltage range from $1,5 \mathrm{Vdc}$ to 220 Vac . Cradle relays are available as dust protected and hermetically sealed versions, with plug in or solder terminals and are capable to switch currents up to 5 A . Forcibly guided (linked) contact sets optional. Dielectric strength 500 Vrms. Dimensions from approx. $19 \times 24$ to $19 \times 35 \mathrm{~mm}$ board space and 30 mm height.

## Other Relays

We offer a variety of different relay families for maintenance and replacement purposes. These relays are up to 60 years old now, such as Card Relay SN (V23030 / V23031 series), Small General Purpose Relay (V23006 series), Small Polarized Relay (V23063 ... V23067 and V23163 ... V23167 series). Accessories like sockets, hold down springs, etc. optional.

## HF3 Relay

High performance low cost RF relay with excellent RF characteristics. Available with an impedance of 50 and 75 Ohm. Suitable for frequencies up to 3 GHz . Actually smallest RF relay available combining small size, excellent RF performance and SMD solderability. Available as non latching or latching relay with 1 or 2 coils and a nominal coil voltage range from 3 ... 24 V , coil power consumption 140 mW , latching relays with 1 coil 70 mW . Dimensions $14.6 \times 7.3 \times 10 \mathrm{~mm}$.

AXICOM

## Electronics



Tyco Electronics AXICOM Ltd.
Seestrasse 295 -P.O. Box 220
CH-8804 Au-Wädenswil / Switzerland
Phone +41 17829111
Fax +4117829080
E-mail: axicom@tycoelectronics.com


Tyco Electronics AMP GmbH
Paulsternstrasse 26
D-13629 Berlin / Germany
Phone +49 3038638260
Fax +49 3038638569
E-mail: axicom@tycoelectronics.com


Tyco Electronics EC Trutnov s.r.o.
Komenského 821
CZ-541 01 Trutnov / Czech Republic
E-mail: axicom@tycoelectronics.com

Tyco Electronics Corporation POB 3608,
Harrisburg, PA 17105, USA


[^0]:    Further coil versions are available on request.

