1 1992

P54/74FCT861AT/BT/CT—P54/74FCT863AT/BT/CT P54/74FCT864AT/BT/CT BUS INTERFACE TRANSCEIVERS

FEATURES

Z.

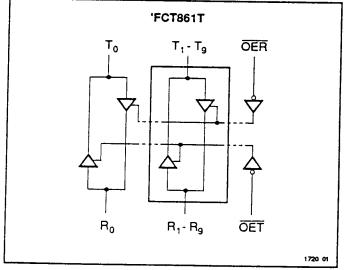
- Function, Pinout and Drive Compatible with the FCT, F Logic and AM29861/863/864
- FCT-C speed at 5.1ns max. (Com'l) FCT-B speed at 6.0ns max. (Com'l)
- Reduced V_{OH} (typically = 3.3V) versions of Equivalent FCT functions
- Edge-rate Control Circuitry for Significantly Improved Noise Characteristics
- ESD protection exceeds 2000V

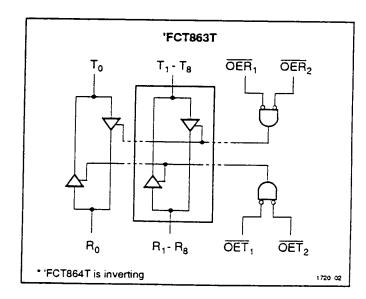
- Power-off disable feature
- Matched Rise and Fall times
- Fully Compatible with TTL Input and Output Logic Levels
- 64 mA Sink Current (Com'l), 32 mA (Mil) 15 mA Source Current (Com'l), 12 mA (Mil)
- Buffered Common Clear and Preset Input
- High Speed Parallel Latches
- Buffered Common Latch Enable Input
- Manufactured in 0.7 micron PACE Technology™

갋

DESCRIPTION

The 'FCT860T bus interface transceivers provide high-performance interface buffering for wide data/address paths or buses carrying parity. The 'FCT861T is a non-inverting, 10-bit transceiver. The 'FCT863T and 'FCT864T are 9-bit transceivers having NAND-ed output enables for maximum control flexibility. The 'FCT864T is the inverting version of the 'FCT863T.


The 'FCT800T high performance interface family is designed for high-capacitance load drive capability while providing low-capacitance bus loading at both inputs and outputs. All inputs have clamp diodes and all outputs are


designed for low-capacitance bus loading in the high impedance state.

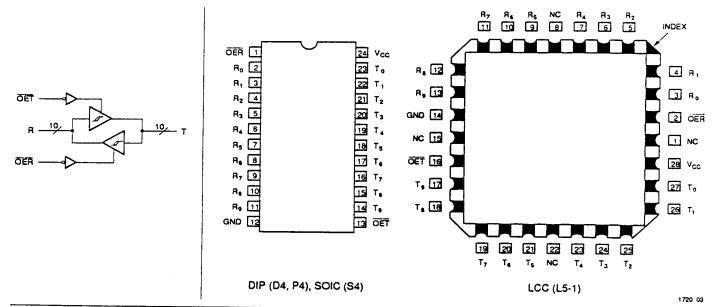
The 'FCT800T interface family are manufactured using PACE Technology™ which is Performance Advanced CMOS Engineered to use 0.7 micron effective channel lengths giving 400 picosecond loaded* internal gate delays. PACE Technology includes two-level metal and epitaxial substrates. In addition to very high performance and very high density, the technology features latch-up protection, single event upset protection, and is supported by a Class 1 environment volume production facility.

* For a fan-in/fan-out of 4, at 85°C junction temperature and 5.0V.

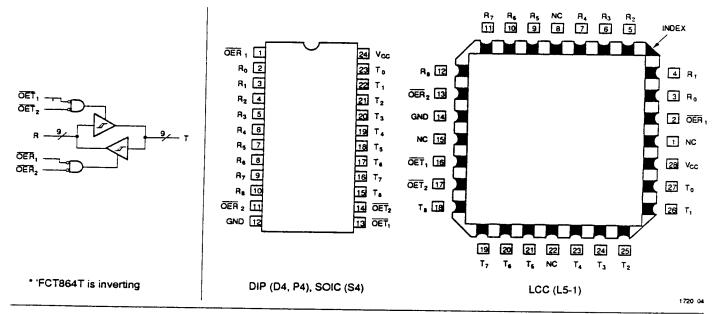
FUNCTIONAL BLOCK DIAGRAMS

PERFORMANCE
SEMICONDUCTOR CORPORATION

Means Quality, Service and Speed


©1992 Performance Semiconductor Corporation

213/92 - 3


LOGIC SYMBOLS

PIN CONFIGURATIONS

'FCT861T 10-BIT TRANSCEIVER

'FCT863T/864T 9-BIT TRANSCEIVER

PIN DESCRIPTION

Name	1/0	Description
'FCT86		Description
	, , ,	Y
OER I		When LOW in conjunction with OET HIGH activates the RECEIVE mode.
		When LOW in conjunction with OER HIGH activates the TRANSMIT mode.
R,	1/0	10-bit RECEIVE input/output.
T,	1/0	10-bit TRANSMIT input/output.
'FCT86	3T/8	64T
ŌER,	ŀ	When LOW in conjunction with OET, HIGH activates the RECEIVE mode.
ŌET,	1	When LOW in conjunction with OER, HIGH activates the TRANSMIT mode.
R,	1/0	9-bit RECEIVE input/output.
T,	1/0	9-bit TRANSMIT input/output.

1720 Tbl 0

TRUTH TABLE

'FCT861T/863T (Non-inverting)

	inp	uts		Out	puts	_
OET	OER	R,	T,	R,	T,	Function
L	Н	L	N/A	N/A	L	Transmitting
L	Н	Н	N/A	N/A	Н	Transmitting
Н	٦	N/A	L	L	N/A	Receiving
Н	٦	N/A	Н	Н	N/A	Receiving
Н	Н	Х	Х	Z	Z	High-Z

NOTE:

1720 Tbl 02

3

H = HIGH, L = LOW, Z = Impedance, X = Don't Care, N/A = Not Applicable.

ABSOLUTE MAXIMUM RATINGS1,2

Symbol	Parameter	Value	Unit
T _{STG}	Storage Temperature	-65 to +150	°C
TA	Ambient Temperature Under Bias	-65 to +135	°C
V _{cc}	V _{cc} Potential to Ground	-0.5 to +7.0	٧
P _T	Power Dissipation	0.5	W

1720	Tbi

N	^	10	

 Operation beyond the limits set forth in the above table may impair the useful life of the device. Unless otherwise noted, these limits are over the operating free-air temperature range.

Symbol	Parameter	Value	Unit
I _{OUTPUT}	Current Applied to Output	120	mA
V _{IN}	Input Voltage	-0.5 to +7.0	V
V _{out}	Voltage Applied to Output	-0.5 to +7.0	V

1720 Tbl 04

Unused inputs must always be connected to an appropriate logic voltage level, preferably either V_{cc} or ground.

RECOMMENDED OPERATING CONDITIONS

Free Air Ambient Temperature	Min	Max
Military Commercial	−55°C 0°C	+125°C
Commercial	0.0	+70°C

	_		
1720	Ты	05	

Supply Voltage (V _{cc})	Min	Max
Military	+3.1V	+3.5V
Commercial	+3.1V	+3.5V

1720 ТЫ 06

1720 Tbl 07

DC ELECTRICAL CHARACTERISTICS (Over recommended operating conditions)

Symbol	Parameter		Min	Typ¹	Max	Units	V _{cc}	Conditions
V _{IH}	Input HIGH Voltage	2.0			V			
V,_	Input LOW Voltage				0.8	V		
V _H	Hysteresis			0.35		٧		All inputs
V _{iK}	Input Clamp Diode Voltage			-0.7	-1.2	٧	MIN	i _{IN} = -18mA
V _{ОН}	Output HIGH Voltage	Military Commercial	2.4 2.4	3.3 3.3		V V	MIN MIN	1 OH
V _{OL}	Output LOW Voltage	Military Commercial Commercial		0.3 0.3 0.3	0.5 0.5 0.5	> > >	MIN MIN MIN	l _{oL} = 32mA l _{oL} = 48mA
I,	Input HIGH Current				20	μА	MAX	V _{IN} = V _{CC}
l _{iH}	Input HIGH Current				5	μА		V _{IN} = 2.7V
l _{iL}	Input LOW Current				- 5	μА		V _{IN} = 0.5V
I _{OZH}	Off State I _{our} HIGH-Level Output	Current			10	μА	MAX	
l _{ozL}	Off State I _{out} LOW-Level Output	Current			-10	μА	MAX	
os	Output Short Circuit Current ²		-60	-120	-225	mA	MAX	
OFF	Power-off Disable				100	μА	ov	V _{our} = 4.5V
C _{'N}	Input Capacitance ³			5	10	рF	MAX	
Соит	Output Capacitance ³			9	12	ρF	MAX	All outputs
Icc	Quiescent Power Supply Current			0.2	1.5	mA	MAX	V _{IN} ≤ 0.2V, V _{IN} ≥V _{CC} -0.2V

Notes

- 1. Typical limits are at V_{cc} = 3.3V, T_{A} = +25°C ambient.
- 2. Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect
- operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{os} tests should be performed last.
- 3. This parameter is guaranteed but not tested.

2/13/92 - 3

DC CHARACTERISTICS (Over recommended operating conditions unless otherwise specified.)

Symbol	Parameter	Typ¹	Max	Units	Conditions
ΔΙ _{cc}	Quiescent Power Supply Current (TTL inputs)	0.2	2.0	mA	$V_{cc} = MAX$, $V_{iN} = 2.7V^2$, $f_1 = 0$, Outputs Open
I _{CCD}	Dynamic Power Supply Current ³	0.15	0.25	mA/ mHz	V_{CC} = MAX, One Input Toggling, 50% Duty Cycle, Outputs Open, \overline{OER} or \overline{OET} = GND, $V_{IN} \le 0.2V$ or $V_{IN} \ge V_{CC} - 0.2V$
		1.7	4.0	mA	V_{cc} = MAX, 50% Duty Cycle, Outputs Open, One Bit Toggling at f ₁ = 10MHz, OER or OET = GND, $V_{iN} \le 0.2V$ or $V_{iN} \ge V_{cc} - 0.2V$
l _c	Total Power Supply Current⁵	2.0	5.0	mA	V _{CC} = MAX, 50% Duty Cycle, Outputs Open, One Bit Toggling at f, = 10mHz, OER or OET = GND, V _{IN} = 2.7V or V _{IN} = GND
		3.2	6.54	mA	$V_{\rm CC} = {\rm MAX},$ 50% Duty Cycle, Outputs Open, Eight Bits Toggling at f, = 2.5MHz, $\overline{\rm OER}$ or $\overline{\rm OET}$ = GND, $V_{\rm IN} \le 0.2 {\rm V}$ or $V_{\rm IN} \ge V_{\rm CC} - 0.2 {\rm V}$
		5.2	14.5⁴	mA	$V_{\rm CC} = {\rm MAX},$ 50% Duty Cycle, Outputs Open, Eight Bits Toggling at $f_1 = 2.5{\rm MHz},$ $\overline{\rm OER}$ or $\overline{\rm OET} = {\rm GND},$ $V_{\rm IN} = 2.7{\rm V}$ or $V_{\rm IN} = {\rm GND}$

Notes:

Typical values are at V_{cc} = 3.3V, +25°C ambient.
 Per TTL driven input (V_N = 2.7V); all other inputs at V_{cc} or GND.

3. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.

4. Values for these conditions are examples of the I_{cc} formula. These limits are guaranteed but not tested.

= $|_{\text{OUIESCENT}} + |_{\text{INPUTS}} + |_{\text{DYNAMIC}}$ = $|_{\text{cc}} + \Delta |_{\text{cc}} D_{\text{H}} N_{\text{T}} + |_{\text{ccp}} (f_{\text{o}}/2 + f_{\text{t}} N_{\text{t}})$ = Quiescent Current with CMOS input levels

ΔI_{cc} = Power Supply Current for a TTL High Input $(V_{N} = 2.7V)$

= Duty Cycle for TTL Inputs High

 N_T = Number of TTL inputs at D_H

I_{cco} = Dynamic Current Caused by an Input Transition Pair (HLH or

1720 Tbl 08

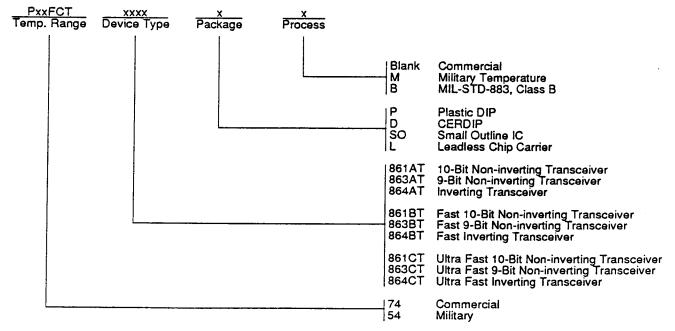
= Clock Frequency for Register Devices (Zero for Non-Register Devices)

= Input Frequency

= Number of Inputs at f,

All currents are in milliamps and all frequencies are in megahertz.

5 2/13/92 - 3


SWITCHING CHARACTERISTICS OVER OPERATING RANGE

			FCT861AT/863AT/864AT FCT861BT/863BT/864BT FCT861CT/863CT/864CT												
Sym.	Parameter	Test Conditions ¹	M	1L	COM'L		MIL		COMIL		MIL		COM'L		Units
		Conditions	Min.	Max.	Min.²	Max.	Min.²	Max.	Min.²	Max.	Min.2	Max.	Min.2	Max.	
t _{pLH}	Propagation Delay	C _L = 50pF R _L = 500Ω	-	9.0	_	8.0	_	6.5	_	6.0	2.0	5.6	2.0	5.1	ns
t _{PHL}	R, to T, or T, to R, 'FCT861T/863T	C _L = 300pF ³ R _L = 500Ω	-	17.0	_	15.0	_	14.0	_	13.0	4.0	13.0	4.0	12.0	ns
t _{sur} Propagation Delay	C _L = 50pF R _L = 500Ω	_	9.0	-	7.5	_	6.5	_	5.5	2.0	5.3	2.0	4.7	ns	
C _{PPHL}	R _i to T _i or T _i to R _i FCT864T	C _L = 300pF ³ R _L = 500Ω	_	16.0	-	14.0	_	14.0	_	13.0	4.0	12.5	4.0	11.5	ns
t _{ezə}	Output Enable Time	C _L = 50pF R _L = 500Ω	_	13.0	_	12.0	_	9.0	_	8.0	2.0	7.6	2.0	6.8	ns
t _{PZL}	OET to T, or OER to R,	C _L = 300pF ³ R _L = 500Ω	-	22.0	_	20.0	-	16.0	_	15.0	4.0	15.0	4.0	14.0	ns
t _{etz} Outpu	Output Disable Time	C _L = 5pF ³ R _L = 500Ω	_	9.0	_	9.0	_	7.0	_	6.0	1.5	6.1	1.5	5.1	ns
t _{PLZ}	OET to T, or OER to R,	C _L = 50pF R _L = 500Ω	-	10.0	_	10.0	_	8.0	_	7.0	2.0	6.6	2.0	5.6	ns

Notes:

- 1. See test circuit and waveforms.
- 2. Minimum limits are guaranteed but not tested on Propagation Delays.
- 3. This parameters are guaranteed but not tested.

ORDERING INFORMATION

1720 05

1720 Tbl 09

2/13/92 - 3

AE1720-2