
							F	REVIS	IONS										
LTR				С	DESCR	IPTIO						DA	ATE (Y	R-MO-[DA)		APPF	ROVED)
Α			and class nentsld	K dev	rices. A	Added	RHA	require	ements	s. Red	rew	97-10-23			K.A. Cottongim				
В	Add c		tlines Y ar	nd Z.	Table I	l, I _{IN} r	naxim	um lim	nit, cha	ınge fr	om		99-0	7-12		R. Monnin			
REV																			
SHEET																			
SHEET	JS		RE	V		В	В	В	В	В	В	В	В	В	В	В	В	В	В
SHEET REV SHEET			-	V EET		B 1	B 2	B 3	B 4	B 5	B 6	B 7	B 8	B 9	B 10	B 11	B 12	B 13	B 14
SHEET REV SHEET REV STATU			SHI							5	6 DEFEN	7 NSE S	8 UPPL P. C	9 Y CEN	10 NTER (3990	11 COLU	12 IMBUS	13	
SHEET REV SHEET REV STATU OF SHEETS PMIC N/A STA MICRO	NDAF	CUIT	SHI PRE Gar	EET PAREE ry Zahn	1	1				5	6 DEFEN	7	8 UPPL P. C	9 Y CEN	10 NTER (3990	11 COLU	12 IMBUS	13	
SHEET REV SHEET REV STATU OF SHEETS PMIC N/A STA MICRO DRA THIS DRAWI FOR U	NDAF DCIRC AWING ING IS AV	CUIT G (AILABL	SHI PRE Gar CHE Mic	PARECT PARECT STATE OF CHARLES COMMENT OF CHARLES C	BY . Jones	1			4 MIC	5 ROCI	6 DEFEN	7 NSE S COLUM	8 UPPL P. C	9 Y CEN D. BOX	10 NTER (3990) 432	11 COLU	12 IMBUS	13	14
SHEET REV SHEET REV STATU OF SHEETS PMIC N/A STA MICRO DRA THIS DRAWI FOR U	NDAF DCIRC AWING ING IS AV JSE BY A ARTMENT INCIES OI	CUIT G /AILABL ILL IS F THE	SHI PRE Gar CHE Mic APP Ker	PAREIT Y Zahn CKED Chael C.	BY . Jones	gim	2		4 MIC	5 ROCI	6 RCUI L, DC	7 NSE S COLUM	8 UPPL P. C MBUS, YBRIC	9 Y CEN D. BOX	10 NTER (3990) 432	11 COLU 16-500 ±15 \	12 IMBUS	13	14

DSCC FORM 2233
APR 97
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

5962-E334-99

- 1. SCOPE.
- 1.1 <u>Scope</u>. This drawing documents five product assurance classes, class D (lowest reliability), class E, (exceptions), class G (lowest high reliability), class H (high reliability), and class K, (highest reliability) and a choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of radiation hardness assurance levels are reflected in the PIN.
 - 1.2 PIN. The PIN shall be as shown in the following example:

- 1.2.1 <u>Radiation hardness assurance (RHA) designator</u>. Device classes H and K RHA marked devices shall meet the MIL-PRF-38534 specified RHA levels and shall be marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device. Only, the RHA levels specified herein are available.
 - 1.2.2 <u>Device type(s)</u>. The device type(s) shall identify the circuit function as follows:

Device type	<u>Generic number</u>	<u>Circuit function</u>			
01	MSA2815D/883, MGA2815D	DC-DC converter, 5 W, ±15 V outputs			
02	SMSA2815D	DC-DC converter, 5 W, ±15 V outputs			

1.2.3 <u>Device class designator</u>. This device class designator shall be a single letter identifying the product assurance level as follows:

<u>Device class</u> <u>Device performance documentation</u>

D, E, G, H, or K Certification and qualification to MIL-PRF-38534

1.2.4 Case outline(s). The case outline(s) shall be as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
X	See figure 1	8	Dual-in-line
Υ	See figure 1	20	Flat pack
7	See figure 1	20	Flat pack with formed leads

- 1.2.5 Lead finish. The lead finish shall be as specified in MIL-PRF-38534.
- 1.3 Absolute maximum ratings. 1/

Input voltage range	-0.5 V dc to +50 V dc
Power dissipation (P _D)	3.2 W
Output power	5.3 W
Lead soldering temperature (10 seconds)	+300°C
Storage temperature range	-65°C to +150°C

1/ Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-93090
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL B	SHEET 2

1.4	Recommended operating conditions.
	·

 $\label{eq:local_$

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbook</u>. The following specification, standards, and handbook form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (DoDISS) and supplement thereto, cited in the solicitation.

SPECIFICATION

DEPARTMENT OF DEFENSE

MIL-PRF-38534 - Hybrid Microcircuits, General Specification for.

STANDARDS

DEPARTMENT OF DEFENSE

MIL-STD-883 - Test Methods and Procedures for Microelectronics.

MIL-STD-973 - Configuration Management.
MIL-STD-1835 - Microcircuit Case Outlines.

HANDBOOK

DEPARTMENT OF DEFENSE

MIL-HDBK-780 - Standard Microcircuit Drawings.

(Unless otherwise indicated, copies of the specification, standards, and handbook are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

- 3.1 <u>Item requirements</u>. The individual item performance requirements for device classes D, E, G, H, and K shall be in accordance with MIL-PRF-38534. Compliance with MIL-PRF-38534 may include the performance of all tests herein or as designated in the device manufacturer's Quality Management (QM) plan or as designated for the applicable device class. Therefore, the tests and inspections herein may not be performed for the applicable device class (see MIL-PRF-38534). Futhermore, the manufacturers may take exceptions or use alternate methods to the tests and inspections herein and not perform them. However, the performance requirements as defined in MIL-PRF-38534 shall be met for the applicable device class.
- 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38534 and herein.
 - 3.2.1 Case outline(s). The case outline(s) shall be in accordance with 1.2.4 herein and figure 1.

STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000

SIZE A		5962-93090
	REVISION LEVEL B	SHEET 3

- 3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 2.
- 3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full specified operating temperature range.
- 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are defined in table I.
- 3.5 <u>Marking of device(s)</u>. Marking of device(s) shall be in accordance with MIL-PRF-38534. The device shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's vendor similar PIN may also be marked as listed in QML-38534.
- 3.6 <u>Data</u>. In addition to the general performance requirements of MIL-PRF-38534, the manufacturer of the device described herein shall maintain the electrical test data (variables format) from the initial quality conformance inspection group A lot sample, for each device type listed herein. Also, the data should include a summary of all parameters manually tested, and for those which, if any, are guaranteed. This data shall be maintained under document revision level control by the manufacturer and be made available to the preparing activity (DSCC-VA) upon request.
- 3.7 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to supply to this drawing. The certificate of compliance (original copy) submitted to DSCC-VA shall affirm that the manufacturer's product meets the performance requirements of MIL-PRF-38534 and herein.
- 3.8 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-PRF-38534 shall be provided with each lot of microcircuits delivered to this drawing.

4. QUALITY ASSURANCE PROVISIONS

- 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38534 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
 - 4.2 Screening. Screening shall be in accordance with MIL-PRF-38534. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to either DSCC-VA or the acquiring activity upon request. Also, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - (2) T_C as specified in accordance with table I of method 1015 of MIL-STD-883.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000

SIZE

A

SIZE

A

FREVISION LEVEL
B

SHEET
4

		TABLE I. <u>Ele</u>	ctrical performance	e characteristics	<u>s</u> .			
Test	Symbol	-55°C < T	ions $1/$ $C \le +125^{\circ}C$ $\pm 0.5 \text{ V, } C_{L} = 0,$ wise specified	Group A subgroups	Device type	Lin	nits Max	Unit
		unless other	wise specified			IVIIII	IVIax	
Output voltage	+V _{OUT}	±I _{OUT} = ±167 m.	A	1	01,02	14.85	15.15	V
				2,3	01,02	14.40	15.60	
			L,R	1,2,3	02	14	16	
	-V _{OUT}			1	01,02	-14.70	-15.30]
				2,3	01,02	-13.80	-16.20	
			L,R	1,2,3	02	-14	-16	
Output current 2/	l _{OUT}	V _{IN} = 16, 28, and	d 40 V dc	1,2,3	01,02	0.0	267	mA
			L,R	1,2,3	02	0.0	0.700	<u> </u>
Output ripple 3/	V _{RIP}	±I _{OUT} = ±167 m. B.W. = 10 kHz to	Α,	1	01		150	mV p-p
voltage (±V _{OUT})		B.W. = 10 KHz to	o 2MHz		02		300	
					01		250	
					02		500	
			L,R	1,2,3	02		2	V p-p
Line regulation +V _{OUT}	VR _{LINE}	±I _{OUT} = ±167 m. V _{IN} = 16 and 40	A, V dc	1,2,3	01,02		50	mV
			L,R	1,2,3	02		100	
-V _{OUT}				1,2,3	01,02		180]
			L,R	1,2,3	02		400	
Load regulation +V _{OUT}	VR _{LOAD}	$\pm I_{OUT} = 0$ to ± 16	67 mA	1,2,3	01,02		50	mV
			L,R	1,2,3	02		100	
-V _{OUT}				1,2,3	01,02		200	
			L,R	1,2,3	02		400	

See footnotes at end of table.

STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000

SIZE

A

SIZE
A

SP62-93090

REVISION LEVEL
B

SHEET
5

Test	Symbol	Conditio -55°C_≤T _C		Group A subgroups	Device type	Limits		Unit
		V _{IN} = 28V dc : unless otherwi	$\pm 0.5 \text{ V, C}_{L} = 0,$ ise specified	Jang, Japa	туре	Min	Max	
Input current	I _{IN}	I _{OUT} = 0, inhibit pir	n (pin 1) = 0	1,2,3	01,02		5	mA
			L,R]	02		25	
		I _{OUT} = 0, inhibit pir	n (pin 1) = open]	01,02		60	
			L,R]	02		100	
Input ripple current	I _{RIP}	±I _{OUT} = ±167 mA B. W. = 10 kHz to		1	01		100	mA p-p
		B. W. = 10 KHZ to	10 MHz		02		200	
				2,3	01		150	
					02		300	
			L,R	1,2,3	02		600	
Efficiency	Eff	±I _{OUT} = ±167 mA		1	01	70		%
					02	68		
				2,3	01	68		
					02	66		
			L,R	1,2,3	02	64		
Isolation	ISO	Input to output or a except pin 8, T _C =	iny pin to case +25°C	1	01,02	100		МΩ
		1	L,R	1	02	100		
Internal power	P _D	Short circuit		1	01,02		1.6	w
dissipation, load fault				2,3	1'		1.8	
			L,R	1,2,3	02		2.0	
Switching	F _S	±I _{OUT} = ±167 mA		4	01,02	500	600	kHz
frequency				5,6	01,02	480	620	
		1	L,R	4,5,6	02	400	600	

STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000

SIZE

A

SIZE

A

FREVISION LEVEL
B

SHEET
6

	TAI	BLE I. Electric	ical performance ch	naracteristics -	Continued	1.		
Test	Symbol	Con -55°C <u>-</u>	nditions <u>1</u> / <t<sub>C <u><</u>+125°C</t<sub>	Group A subgroups	Device type	Lim	nits	Unit
		V _{IN} = 28V d unless othe	$\leq T_C \leq +125$ °C dc ±0.5V, $C_L = 0$, erwise specified			Min	Max	
Output response to	VO _{TLOAD}		load to/from	4	01	-450	+450	mV pk
step transient load changes <u>4</u> /		loads on ea	nt load; balanced ach output	Ĺ'	02	-600	+600	1
(±V _{OUT})				5,6	01,02	-1400	+1400	1
			L,R	4,5,6	02	-3000	+3000	
Recovery time, step transient load	TT _{LOAD}		load to/from nt load; balanced	4	01,02		500	μs
changes <u>4/ 5/</u> (±V _{OUT})		loads on ea		5,6	01,02		4500	
			L,R	4,5,6	02		6000	
Output response to transient step line	VO _{TLINE}	Input step fr 40 V dc, ±l ₍	Input step from 16 V dc to 40 V dc, ±I _{OUT} = ±167 mA		01,02	-1.5	+1.5	V pk
changes <u>6</u> / <u>7</u> /			L,R	1	02	-3.0	+3.0	1
			from 40 V dc to	1	01	-1.0	+1.0	1
		16 V dc, ±I _C	OUT = ±167 mA	1	02	-1.5	+1.5	1
			L,R	'	02	-3.0	+3.0	
Recovery time to transient step line	TT _{LINE}		from 16 V dc to _{OUT} = ±167 mA	4,5,6	01,02		1.2	ms
changes <u>5</u> / <u>6</u> / <u>7</u> /			L,R	1	02		6.0	1
			Input step from 40 V dc to 16 V dc, ±I _{OUT} = ±167 mA		01,02		1.2	
			L,R	'	02		6.0	
Turn-on delay <u>5</u> / <u>8</u> /	Ton _D	V _{IN} = 0 to 4 I _{OUT} = ±167	₀0 V dc, ₀7 mA	4,5,6	01,02		25	ms
			L,R	'	02		50	
Turn-on overshoot	Vton _{OS}	±I _{OUT} = ±16	67 mA	4	01,02		500	mV pk
<u>6</u> /				5,6	01,02		750	İ
See footnotes at end of			L,R	4,5,6	02	'	1200	L

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-93090
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL B	SHEET 7

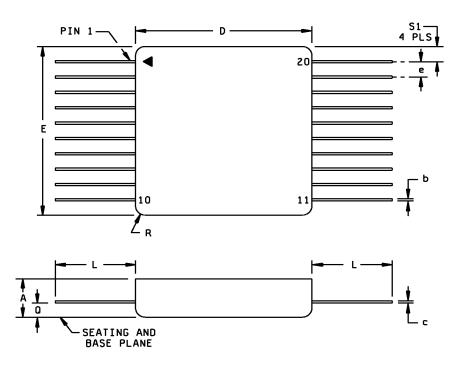
	TABI	_E I. <u>Electrical pe</u>	rformance chai	<u>racteristics</u> - Co	ontinued.			
Test	Symbol	Conditio -55°C <u><</u> T _C	< +125°C	Group A subgroups	Device type	Lin	Limits	
		V _{IN} = 28V dc ±0 unless otherwis	D.5 V, C _L = 0, e specified		,,	Min	Max	
Load fault recovery	Tr _{LF}	±l _{OUT} = ±167 m	ıA	4,5,6	01,02		50	ms
<u>5</u> / <u>6</u> /			L,R	4,5,6	02		50	
Capacitive load, <u>6</u> / <u>9</u> / (both outputs)	CL	No effect on dc performance T _C = +25° C		4	01,02		10	μF
			L,R	4	02		10	

- 1/ Post irradiation testing shall be in accordance with 4.3.5. herein.
- 2/ The total output power available is 80 percent from either output up to 4 watts, providing the opposite output is simultaneously carrying 20 percent of the total output power. Each output must carry a minimum of 20 percent of the total output power in order to maintain regulation on the negative output.
- 3/ Bandwidth guaranteed by design. Tested for 10 kHz to 2 MHz.
- 4/ Load step transition time is 10 microseconds minimum.
- 5/ Recovery time is measured from the initiation of the transient to where V_{OUT} has returned to within ±1 percent of V_{OUT} final value.
- 6/ Parameter shall be tested as part of design characterization and after design or process changes. Therefore, the parameter shall be guaranteed to the limits specified in table I.
- 7/ Input step transition time greater than 10 microseconds.
- Turn-on delay time measurement is for either a step application of power at the input or the removal of a ground signal from the inhibit pin (pin 1) while power is applied to the input.
- 9/ Capacitive load may be any value from 0 to the maximum limit without compromising dc performance.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-93090
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL B	SHEET 8

Case outline X. | B | D | S | P | S |

Symbol	Millimeters		Inc	hes
,	Min	Max	Min	Max
Α		6.86		0.270
b	1.79	DIA	0.07	0 DIA
b1	0.64	1 DIA	0.02	5 DIA
D/E		27.31		1.075
E1	20.19	20.45	0.795	0.805
e/S	3.23	3.48	0.127	0.137
e1	8.31	8.56	0.327	0.337
e2	13.39	13.64	0.527	0.537
e3	18.47	18.72	0.727	0.737
e4/S1	23.55	23.80	0.927	0.937
L		5.59		0.220
R	1.14	1.40	0.045	0.055


NOTES:

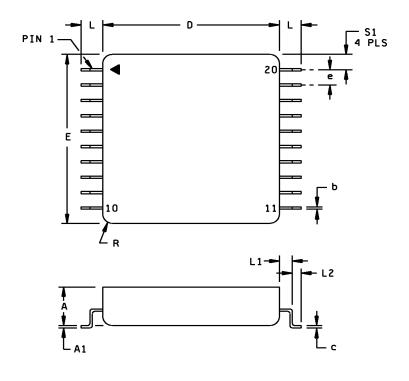
- 1. The U.S. government preferred system of measurement is the metric SI. This item was designed using inch-pound units of measurement. In case of problems involving conflicts between the metric and inch-pound units, the inch-pound units shall rule.
- 2. Pin numbers are for reference only.
- 3. Device weight: 15 grams maximum.

FIGURE 1. Case outline(s).

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-93090
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		B	9

Case outline Y.

Symbol	Millimeters		Inch	nes
	 Min	Max	 Min	 Max
Α		6.36		0.250
b	0.30	0.56	0.012	0.022
С	0.20	0.41	0.008	0.016
D/E	27.81	28.07	1.095	1.105
е	2.54 BSC		0.100 BSC	
L	12.7 TYP		0.500 TYP	
Q	1.78	2.29	0.070	0.090
R		1.52		0.060
S1	2.29	2.79	0.090	0.110


NOTES:

- The U.S. government preferred system of measurement is the metric SI. This case outline was designed using inchpound units of measurement. In case of problems involving conflicts between the metric and inch-pound units, the inch-pound units shall rule.
- 2. Lead identification for reference only.
- 3. Case outline Y weight: 15 grams maximum.

FIGURE 1. Case outline(s) - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-93090
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		B	10

Case outline Z.

Symbol	Millimeters		Inch	nes
	 Min	Max	 Min	Max
l—	IVIIII		IVIIII	
A		6.36		0.250
A1	0.13	0.51	0.005	0.020
b	0.30	0.56	0.012	0.022
С	0.20	0.41	0.008	0.016
D/E	27.81	28.07	1.095	1.105
е	2.54 BSC		0.100	BSC
L	3.43	REF	0.135	REF
L1	1.52	2.03	0.060	0.080
L2	1.14	1.65	0.045	0.065
R		1.52		0.060
S1	2.29	2.79	0.090	0.110

NOTES:

- 1. The U.S. government preferred system of measurement is the metric SI. This case outline was designed using inchpound units of measurement. In case of problems involving conflicts between the metric and inch-pound units, the inch-pound units shall rule.
- 2. Lead identification for reference only.
- 3. Case outline Z weight: 15 grams maximum.

FIGURE 1. Case outline(s) - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-93090
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		B	11

Device types	01	01 and 02
Case outlines	Y and Z	×
Terminal number	Terminal symbol	Terminal symbol
1	Inhibit	Positive output
2	Positve input	Output return
3	Positive input	Negative output
4	No connection	No connection
5	Input common	Inhibit
6	Input common	Input
7	Case ground	Input return
8	Case ground	Case ground
9	No connection	
10	No connection	
11	Positive output	
12	Positive output	
13	Output common	
14	Output common	
15	Negative output	
16	Negative output	
17	No connection	
18	No connection	
19	Case ground	
20	Case ground	

FIGURE 2. <u>Terminal connections</u>.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-93090
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		B	12

TABLE II. Electrical test requirements.

MIL-PRF-38534 test requirements	Subgroups (in accordance with MIL-PRF-38534, group A test table)
Interim electrical parameters	
Final electrical parameters	1*, 2, 3, 4, 5, 6
Group A test requirements	1, 2, 3, 4, 5, 6
Group C end-point electrical parameters	1
Post irradiation end-point electrical parameters for RHA devices	1, 2, 3, 4 ,5, 6

^{*} PDA applies to subgroup 1.

- 4.3 <u>Conformance and periodic inspections</u>. Conformance inspection (CI) and periodic inspection (PI) shall be in accordance with MIL-PRF-38534 and as specified herein.
 - 4.3.1 Group A inspection (CI). Group A inspection shall be in accordance with MIL-PRF-38534 and as follows:
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 7, 8, 9, 10, and 11 shall be omitted.
 - 4.3.2 Group B inspection (PI). Group B inspection shall be in accordance with MIL-PRF-38534.
- 4.3.3 Group C inspection (PI). Group C inspection shall be in accordance with MIL-PRF-38534 and as follows:
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test, method 1005 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to either DSCC-VA or the acquiring activity upon request. Also, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
 - (2) T_C as specified in accordance with table I of method 1005 of MIL-STD-883.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.
 - 4.3.4 Group D inspection (PI). Group D inspection shall be in accordance with MIL-PRF-38534.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-93090
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43216-5000		B	13

4.3.5 <u>Radiation hardness assurance (RHA)</u>. RHA qualification is required only for those devices with the RHA designator as specified herein.

	RHA level L	RHA level R	Units
Total ionizing dose tolerance level	50	100	kRad(Si)
Single event upset survival level (LET)	No guarantee	40	MeV

- a. Radiation dose rate is in accordance with condition C of method 1019 of MIL-STD-883.
- b. The manufacturer shall perform a worst-case and radiation susceptibility analysis on the device. This analysis shall show that the minimum performance requirements of each component has adequate design margin under worst-case operating conditions (extremes of line voltage, temperatures, load, frequency, radiation environment, etc). This analysis guarantees the post-irradiation parameter limits specified in table I.
- c. RHA testing shall be performed at the component level for initial device qualification, and after design changes that may affect the RHA performance of the device. As an alternative to testing, components may be procured to manufacturer radiation guarantees that meet the minimum performance requirements. Component radiation performance guarantees shall be established in compliance with MIL-PRF-19500, Group D or MIL-PRF-38535, Group E, as applicable. For components with less than adequate performance margin, component lot radiation acceptance screening shall be performed.
- d. The manufacturer shall establish procedures controlling component radiation testing, and shall establish radiation test plans used to implement component lot qualification during procurement. Test plans and test reports shall be filed and controlled in accordance with the manufacturer's configuration management system.
- The device manufacturer shall designate a RHA program manager to oversee component lot qualification, and to monitor design changes for continued compliance to RHA requirements.
- 5. PACKAGING
- 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-PRF-38534.
- 6. NOTES
- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.
- 6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-973 using DD Form 1692, Engineering Change Proposal.
- 6.4 <u>Record of users</u>. Military and industrial users shall inform Defense Supply Center Columbus when a system application requires configuration control and the applicable SMD. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0544.
- 6.5 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, P. O. Box 3990, Columbus, Ohio 43216-5000, or telephone (614) 692-0512.
- 6.6 <u>Sources of supply</u>. Sources of supply are listed in QML-38534. The vendors listed in QML-38534 have submitted a certificate of compliance (see 3.7 herein) to DSCC-VA and have agreed to this drawing.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000	SIZE A		5962-93090
		REVISION LEVEL B	SHEET 14

STANDARD MICROCIRCUIT DRAWING SOURCE APPROVAL BULLETIN

DATE: 99-07-12

Approved sources of supply for SMD 5962-93090 are listed below for immediate acquisition only and shall be added to QML-38534 during the next revision. QML-38534 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This bulletin is superseded by the next dated revision of QML-38534.

Standard	Vendor	Vendor
microcircuit drawing	CAGE	similar
PIN <u>1</u> /	number	PIN <u>2</u> /
5962-9309001HXA	50821	MSA2815D/883
5962-9309001HXC	50821	MSA2815D/883
5962-9309001HYA	50821	MGA2815DY/883
5962-9309001HYC	50821	MGA2815DY/883
5962-9309001HZA	50821	MGA2815DZ/883
5962-9309001HZC	50821	MGA2815DZ/883
5962-9309002HXA	50821	SMSA2815D/HO
5962-9309002HXC	50821	SMSA2815D/HO
5962L9309002HXA	50821	SMSA2815D/HL
5962L9309002HXC	50821	SMSA2815D/HL
5962R9309002HXA	50821	SMSA2815D/HR
5962R9309002HXC	50821	SMSA2815D/HR
5962L9309002KXA	50821	SMSA2815D/KL
5962L9309002KXC	50821	SMSA2815D/KL
5962R9309002KXA	50821	SMSA2815D/KR
5962R9309002KXC	50821	SMSA2815D/KR

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.
- 2/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGEVendor name_numberand address

50821 Interpoint Corporation 10301 Willows Road Redmond, WA 98073-9705

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in this information bulletin.