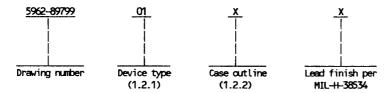
											RI	EVIS	ION	s												
LTR								DES	CRIP	TION	1								DA [*]	ΓĖ (Υ	R-MO	-DA)	1	NPPR	OVE)
REV																										
SHEET																										
REV							<u> </u>																			
SHEET		_	ليبا		Щ																L		L			
REV STA	TUS	-	RE					ļ —	Ш			_					_	L		_	_	L				
PMIC N/		1	SH	EET		PRE	PARE	D BY	4	5	6	L		9 10 11 12 DEFENSE ELECTRONICS SUPPLY CENTER												
STAN				D	ľ	CHE	CKE	BY				1	W)						YTOI							
MILITARY DRAWING MILITARY DRAWING APPROVED OF THE COMMON TO SECRETARY APPROXIMATE					MICROCIRCUIT, DIGITAL, SINGLE CHANGE DRIVER/RECEIVER, HYBRID				HANN	EL																
FOR USE B	THIS DRAWING IS AVAILABLE FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSE 91-06-26							SIZE A				68				596	2-	897	99							
AMSC I	NA					ne V	ISION	LEV	CL.						s	HE	ET								1	

DESC FORM 193

• U.S. GOVERNMENT PRINTING OFFICE: 1987 --- 748-129/60911


5962-E1434

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

1. SCOPE

1.1 Scope. This drawing describes device requirements for class H hybrid microcircuits to be processed in accordance with MIL-H-38534.

1.2 Part or Identifying Number (PIN). The complete PIN shall be as shown in the following example:

1.2.1 <u>Device type(s)</u>. The device type(s) shall identify the circuit function as follows:

Device type	Generic number	Circuit function Coup	ling transformer	<u>Turns ratio</u>
			Transformer	<u>Direct</u>
01	FC 155 3 91	Low power, driver-receiver 1/	0.67:1	0.47:1
02	FC 155392	Low power, driver-receiver 2/	0.67:1	0.47:1

1.2.2 <u>Case outline(s)</u>. The case outline(s) shall be as designated in appendix C of MIL-M-38510, and as follows:

Outline letter

Case outline

X

See figure 1 (1.300" x 0.790" x 0.190"), dual-in-line package

1.3 Absolute maximum ratings.

V ₀₀	-0.3 V dc to +7 V dc
V _{CC}	-0.3 V dc to V _{CC}
Receiver differential voltage	
Receiver common mode voltage	40 V _{P-P} -10 V dc to +10 V dc
Driver peak output current	200 mA
Power dissipation (PD) at TC = +125°C	1.4 W
Storage temperature	-65°C to +150°C
Lead temperature (soldering, 10 seconds)	+300°c
Junction temperature (T ₁)	+160°C
Thermal resistance, junction-to-case (θ _{JC})	18°c/W
Thermal resistance, junction-to-ambient (01A)	35°C/W

1.4 Recommended operating conditions.

V _{CC}	+4.5 V dc to +5.5 V dc
V _{CC} Logic input voltage	0 V dc to +5 V dc
Receiver differential voltage	30 V _{D_D}
Receiver common mode voltage	30 V _{p-p} -10 V dc to +10 V dc
Driver peak output current	220 mA
Serial data rate	1.0 MHz maximum
Junction temperature (T ₁)	+150°C
Case operating temperature range (T _C)	-55°C to +125°€

^{1/} Interfaces with the Harris Manchester encoder/decoder.

STANDARDIZED MILITARY DRAWING

DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444

SIZE A		5962-89799
	REVISION LEVEL	SHEET 2

DESC FORM 193A SEP 87

* U \$ GOVERNMENT PRINTING OFFICE 1988-850-547

^{2/} Interfaces with the Smith's Manchester encoder/decoder.

2. APPLICABLE DOCUMENTS

2.1 <u>Government specifications and standard</u>. Unless otherwise specified, the following specifications and standard of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATIONS

MILITARY

MIL-M-38510

- Microcircuits, General Specification for.

MIL-H-38534

- Hybrid Microcircuits, General Specification for.

STANDARD

MILITARY

MIL-STD-883

- Test Methods and Procedures for Microelectronics.

(Copies of the specifications and standard required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

- 2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.
 - 3. REQUIREMENTS
- 3.1 Item requirements. The individual item requirements shall be in accordance with MIL-H-38534 and as specified herein.
- 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-H-38534 and herein.
 - 3.2.1 <u>Case outline(s)</u>. The case outline(s) shall be in accordance with 1.2.2 herein.
- 3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 2.
- 3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full specified operating temperature range.
- 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.
- 3.5 <u>Marking</u>. Marking shall be in accordance with MIL-H-38534. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in QML-38534 (see 6.6 herein).

STANDARDIZED

MILITARY DRAWING

DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

SIZE
A

FEVISION LEVEL

SHEET
3

DESC FORM 193A SEP 87

. U.S. GOVERNMENT PRINTING OFFICE: 1988-680-54

	Test	 Symbol	Conditions <u>1</u> /	Group A	Device	 <u>Li</u>	mits	 Unit
			-55°C< T _C <+125°C unless otherwise specified	subgroups	type	 Min 	 Max	
Receiver	Input level <u>2</u> /	v _I	Differential input, pin 15 to pin 16	4, 5, 6	ALL	40	 	 V _{P-P}
	Input common mode voltage <u>2</u> /	mode voltage 2/		4, 5, 6	All	-10	+10	 V(pk)
	Output low voltage	VOL	I _{OL} = 16 mA	1, 2, 3	ALL		0.5	V
	Output high voltage	VOH	I _{OH} = -0.4 mA	1, 2, 3	All	2.5	 	\ V
Transmitter	Input low voltage	VIL		1, 2, 3	ALL	 	0.7	 V
	Input high voltage	v _{IH}		1, 2, 3	ALL	2.0		 V
	Input low current	IIL	 V _{IL} = 0.4 V	1, 2, 3	ALL	 	 -1.6 	mA
	Input high current	I	 V _{IH} = 2.7 V	1, 2, 3	ALL	 	 0.04 	mA
	Output voltage	l _{vo}	 Across 35Ω load	1, 2, 3	ALL	6.0	 9.0 	 V(pk)
	Output noise voltage	VON	Across 35Ω load	4, 5, 6	ALL		 10 	 m/b-t
Receiver strobe	Input low voltage	V _{SIL}		1, 2, 3	 All		0.7	v
-	Input high voltage	V _{SIH}		1, 2, 3	ALL	2.0		 V
	 Input low current	ISIL	v _{SIL} = 0.4 v	1, 2, 3	ALL		 -1.6 	 mA
	Input high current	ISIH	V _{SIH} = 2.7 V	1, 2, 3	ALL		0.04	mA

See footnotes at end of table.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-89799
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 4

DESC FORM 193A SEP 87

. U & GOVERNMENT PRINTING OFFICE 1988-550-54

TABLE I. <u>Electrical performance characteristics</u> - Continued.

	Test	Symbol	Conditions 1/	Group A	Device	<u>Li</u>	L Unit	
			-55°C ≤ T _C ≤4125°C unless otherwise specified	subgroups 	types	 Min 	Max	
Transmitter inhibit	Input low voltage	VIIL		1, 2, 3	ALL	0.7	<u> </u>	V
	Input high voltage	NIIH	 	1, 2, 3	ALL	! ! !	2.0	V
	Input low current	IIIL	 V _{SIL} = 0.4 V	1, 2, 3	ALL	 	 -1.6 	mA
	 Input high current	IIIH	 V _{SIH} = 2.7 V 	1, 2, 3	ALL	 0.04 	 	 mA
Power supply	Total Current	I _{CC} -28	Standby mode V _{CC} = 5.5 V dc	1, 2, 3	 All 	 	 3 5 	mA
		 I _{CC} -25 	 25% duty cycle <u>2</u> / into 700 load V _{CC} = 5.5 V dc	 4, 5, 6 	 All 	 - - 	170	mA
		I _{CC} -50	 50% duty cycle into 70Ω load V _{CC} = 5.5 V dc	4, 5, 6	ALL		 350 	mA
		I _{CC} -100	 100% duty cycle <u>2</u> / into 70Ω load V _{CC} = 5.5 V dc	1, 2, 3	ALL		700	mA
Receiver	Input resistance	 R _{IN}	 1 MHz sine wave <u>2</u> /	4, 5, 6	 All	 1.6 	 	KΩ
	 Input capacitance	c _{IN}	 1 MHz sine wave <u>2</u> /	4	ALL	 -	2.0	pF
	 Threshold voltage 3/	 v _{TH}		1, 2, 3	ALL .	0.56	1.0	 V _{P-}
	<u>3</u> /	 	 Group C.end-point electricals			0.56	1.1	

See footnotes at end of table.

STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

SIZE
A

FREVISION LEVEL

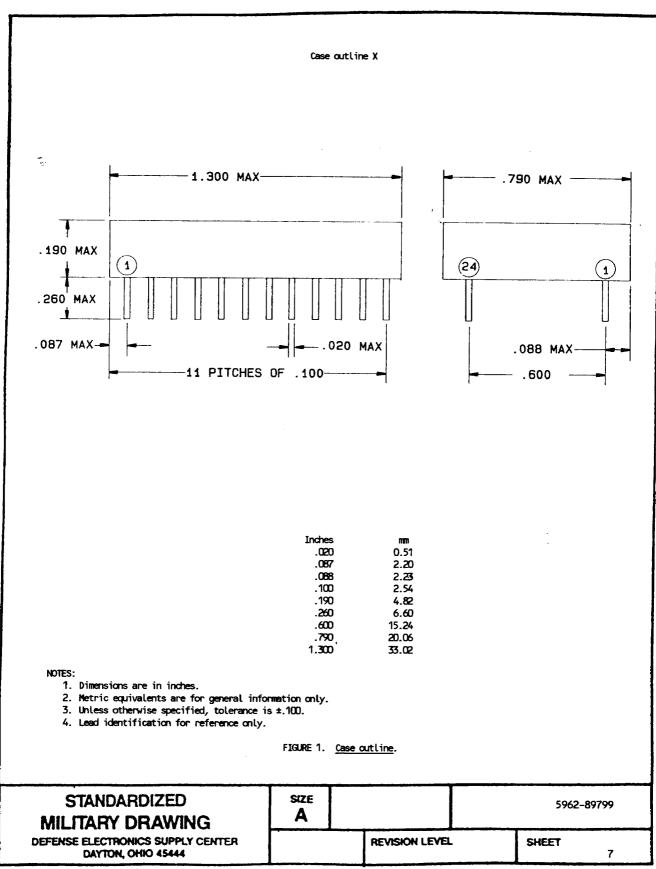
SHEET
5

DESC FORM 193A SEP 87

+ U S. BOVERHMENT PRINTING OFFICE: 1888-850-547

	Test	Symbol	Conditions 1/	Group A	Device	Li	Unit	
			type	Min 	Max			
Transmitter	Output resistance	Rout	1 MHz sine wave 2/	4, 5, 6	All	10	 	kΩ
	Output capacitance transmitter off	Соот	1 MHz sine wave 2/	4	Atl		18	 pF
	Output offset voltage	v _{os}	V _{CC} = 5.5 V dc <u>2</u> / <u>4</u> /	4, 5, 6	ALL	- 9 0	+90	mV(pl
	Peak amplitude variation	Αν	V _{CC} = 4.5 V dc <u>2</u> / <u>5</u> /	4, 5, 6	All	- 15	 +15 	 %
	Delay time, input to output <u>2</u> /	†DR	Delay time from dif- ferential input zero crossing to DATA or DATA, see figure 3	9,10,11	ALL		 3 00 	 ns
	Strobe delay <u>2</u> /	t _{DS}	Delay time from strobe rising or fal <u>ling</u> edge to DATA or DATA, see figure 3	9,10,11	ALL	200	 200	 ns
Transmitter	Rise time	 t _R	Output load = 700, _see figure 3	 9,10,11 	 All	100	 300 	 ns
	 Fall time 	t _F		9,10,11	ALL	100	 300 	 ns
	Delay time	t _{DT}	See figure 3 2/	9,10,11	ALL		 250 	 ns
	 Inhibit delay inhibiting	i It _{M-H}	 See figure 3 2/	9,10,11	ALL		 500	 ns
	Inhibit delay	 t _{D1-L}	See figure 3 2/	9,10,11	ALL		450	ns

1/ Unless otherwise specified, 4.5 V dc \leq V_{CC} \leq 5.5 V dc. 2/ Parameter shall be tested as part of device initial characterization and after design and process changes. Parameter shall be guaranteed to the limits specified in table I for all lots not specifically tested.


- $\underline{3}$ / Threshold is measured in direct coupled mode including the transformer. Threshold is the maximum level on the BUS at which there are no pulses on either receiver output. Divide by 1.4 to obtain threshold in transformer coupled mode. Add 0.14 V in direct coupled mode or 0.10 V in transformer coupled mode to obtain threshold at which no errors are observed when receiver is used with 15530 CMOS Manchester encoder-decoder.
- $\underline{4}$ / Measured across 70Ω load, 2.5 μs after parity bit mid-bit zero crossing of a 660 μs
- $\underline{5}/$ Measured across 70Ω load, variation of average peak amplitude.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-89799			
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL		SHEET	6	

DESC FORM 193A

SEP 87

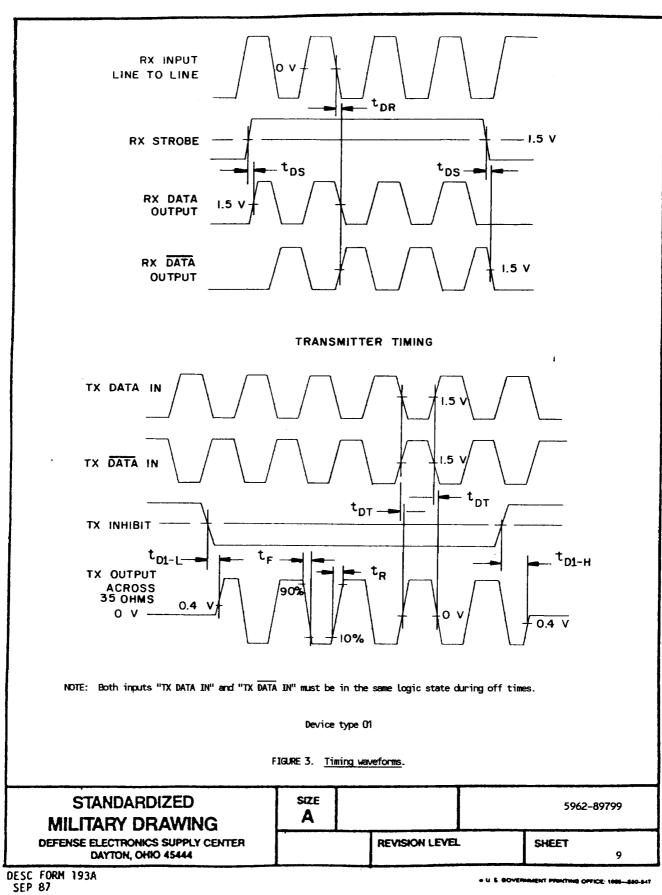
9 U & GOVERNMENT PRINTING OFFICE 1988-850-547

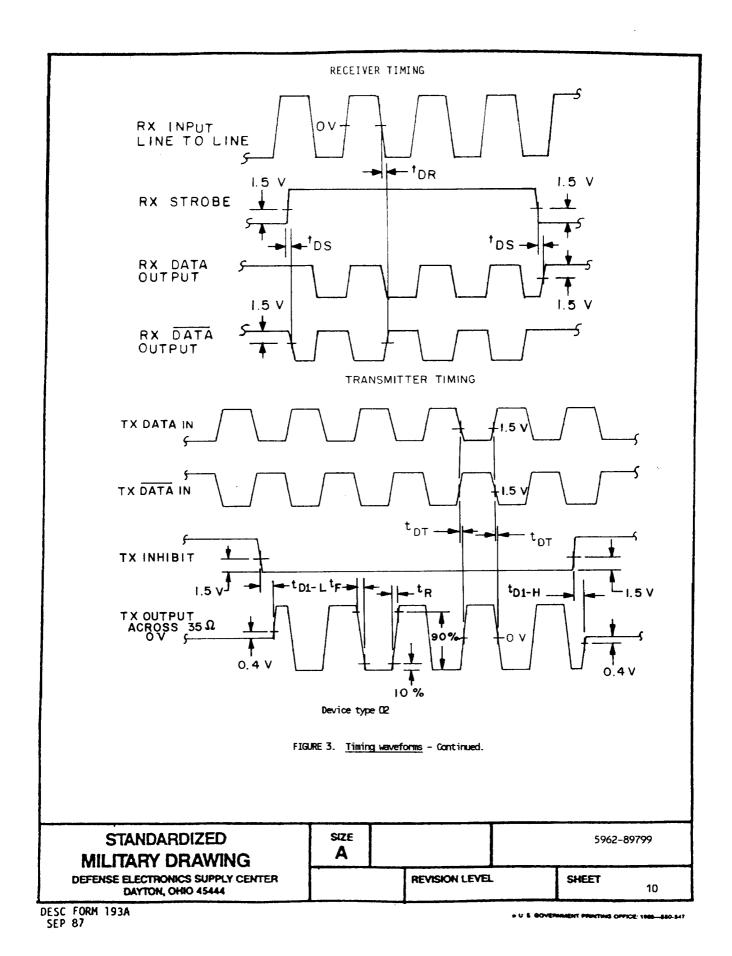
DESC FORM 193A SEP 87

Device types	01 and 02
Case outline	x
Terminal number	Terminal symbol
1	TXDATAOUT
2	TXDATAOUT
3	i case i
4	NO CONNECTION
5	NO CONNECTION
6	NO CONNECTION
7	RXLOGICOUT
8	RXDISABLE
9	GND
j 10	RXLOGICOUT
11	NO CONNECTION
12	NO CONNECTION
13	NO CONNECTION
14	NO CONNECTION
15	RXDATAIN
16	RXDATAIN
17	NO CONNECTION
18	GND
19	NO CONNECTION
20	v _{cc}
21	TXĬNHIBIT
22	TXDATAIN
23	TXDATAIN
24	THERMAL OVERIDE
	ļ
<u> </u>	÷

NOTE: Pin 24 is a no connection if thermal override is not employed.

FIGURE 2. Terminal connections.


STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444


SIZE 5962-89799

REVISION LEVEL SHEET 8

DESC FORM 193A SEP 87

. U. S. DOVERNMENT PRINTING OFFICE: 1005-650-547

Powered by ICminer.com Electronic-Library Service CopyRight 2003

- 3.6 <u>Manufacturer eligibility</u>. In addition to the general requirements of MIL-H-38534, the manufacturer of the part described herein shall submit for DESC-ECC review and approval electrical test data (variables format) on 22 devices from the initial quality conformance inspection group A lot sample, produced on the certified line, for each device type listed herein. The data should also include a summary of all parameters manually tested, and for those which, if any, are guaranteed.
- 3.7 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in CML-38534 (see 6.6 herein). The certificate of compliance submitted to DESC-ECC prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-H-38534 and the requirements herein.
- 3.8 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-H-38534 shall be provided with each lot of microcircuits delivered to this drawing.
 - 4. QUALITY ASSURANCE PROVISIONS
 - 4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with MIL-H-38534.
- 4.2 Screening. Screening shall be in accordance with method MIL-H-38534. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.7 herein).
 - (2) T_A as specified in accordance with table I of method 1015 of MIL-STD-883.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with MIL-H-38534 and as specified herein.
 - 4.3.1 Group A inspection. Group A inspection shall be in accordance with MIL-H-38534 and as follows:
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 7 and 8 shall be omitted.
 - 4.3.2 Group B inspection. Group B inspection shall be in accordance with MIL-H-38534.
 - 4.3.3 Group C inspection. Group C inspection shall be in accordance with MIL-H-38534 and as follows:
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition A, B or C using the circuit submitted with the certificate of compliance (see 3.7 herein).
 - (2) T_A as specified in accordance with table I of method 1005 of MIL-STD-883.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

STANDARDIZED MILITARY DRAWING	SIZE A				5962-8	39799
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		;	REVISION LEVEL	_	SHEET	11

DESC FORM 193A SEP 87

. U. E. GOVERNMENT PRINTING OFFICE: 1005-450-5

TABLE II. Electrical test requirements.

MIL-STD-883 test requirements	Subgroups (per method 5008, group A test table)
Interim electrical parameter	
Final electrical test parameters	1*,2, 3, 4,5,6, 9, 1 0,11
Group A test requirements	1,2,3,4,5,6, 9,10,11
Group C end-point electrical parameters	1,2,3

^{*} PDA applies to subgroup 1.

- 4.3.4 Group D inspection. Group D inspection shall be in accordance with MIL-H-38534.
- 5. PACKAGING
- 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-H-38534.
- 6. NOTES
- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for original equipment design applications and logistic support of existing equipment.
- 6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-481 using DD Form 1693, Engineering Change Proposal (Short Form).
- 6.4 <u>Record of users</u>. Military and industrial users shall inform Defense Electronics Supply Center when a system application requires configuration control and the applicable SMD. DESC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DESC-ECC, telephone (513) 296-8527.
 - 6.5 Comments on this drawing should be directed to DESC-ECC, Dayton, Ohio 45444, or telephone (513) 296-8525.
- 6.6 <u>Approved sources of supply</u>. Approved sources of supply are listed in QML-38534. Additional sources will be added to QML-38534 as they become available. The vendors listed in QML-38534 have agreed to this drawing and a certificate of compliance (see 3.7 herein) has been submitted to and accepted by DESC-ECC.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-89799
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 12

DESC FORM 193A SEP 87

U & GOVERNMENT PRINTING OFFICE 1988-550-547

024400 _ _ _