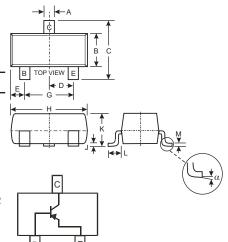


MMBTA55 / MMBTA56


PNP SMALL SIGNAL SURFACE MOUNT TRANSISTOR

Features

- Epitaxial Planar Die Construction
- Complementary NPN Types Available (MMBTA05 / MMBTA06)
- Ideal for Medium Power Amplification and Switching
- Lead Free/RoHS Compliant (Note 3)
- Qualified to AEC-Q101 Standards for High Reliability

Mechanical Data

- Case: SOT-23
- Case Material: Molded Plastic. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020C
- Terminal Connections: See Diagram
- Terminals: Solderable per MIL-STD-202, Method 208
- Lead Free Plating (Matte Tin Finish annealed over Alloy 42 leadframe).
- MMBTA55 Marking (See Page 2): K2H
- MMBTA56 Marking (See Page 2): K2G
- Ordering & Date Code Information: See Page 2
- Weight: 0.008 grams (approximate)

SOT-23								
Dim	Min	Max						
Α	0.37	0.51						
В	1.20	1.40						
С	2.30	2.50						
D	0.89	1.03						
E	0.45	0.60						
G	1.78	2.05						
Н	2.80	3.00						
J	0.013	0.10						
K	0.903	1.10						
L	0.45	0.61						
М	0.085	0.180						
α	0°	8°						
All Din	nensions	in mm						

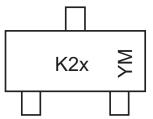
Maximum Ratings @ T_A = 25°C unless otherwise specified

Characteristic	Symbol	MMBTA55	MMBTA56	Unit
Collector-Base Voltage	V _{CBO}	-60	-80	V
Collector-Emitter Voltage	V _{CEO}	-60	-80	V
Emitter-Base Voltage	V _{EBO}	-4.0		V
Collector Current - Continuous (Note 1)	Ic	-500		mA
Power Dissipation (Note 1)	P _d	300		mW
Thermal Resistance, Junction to Ambient (Note 1)	$R_{\theta JA}$	417		°C/W
Operating and Storage and Temperature Range	T _j , T _{STG}	-55 to	-55 to +150	

Electrical Characteristics @ T_A = 25°C unless otherwise specified

Characteristic	Symbol	Min	Max	Unit	Test Condition	
OFF CHARACTERISTICS (Note 2)		•		•		
Collector-Base Breakdown Voltage	MMBTA55 MMBTA56	V _{(BR)CBO}	-60 -80	_	V	$I_C = -100 \mu A, I_E = 0$
Collector-Emitter Breakdown Voltage	MMBTA55 MMBTA56	V _{(BR)CEO}	-60 -80	_	V	I _C = -1.0mA, I _B = 0
Emitter-Base Breakdown Voltage		V _{(BR)EBO}	-4.0	_	V	$I_E = -100 \mu A, I_C = 0$
Collector Cutoff Current	MMBTA55 MMBTA56	I _{CBO}	_	-100	nA	V _{CB} = -60V, I _E = 0 V _{CB} = -80V, I _E = 0
Collector Cutoff Current	MMBTA55 MMBTA56	I _{CEX}	_	-100	nA	V _{CE} = -60V, I _{BO} = 0V V _{CE} = -80V, I _{BO} = 0V
ON CHARACTERISTICS (Note 2)		•			,	
DC Current Gain		h _{FE}	100	_	_	I _C = -10mA, V _{CE} = -1.0V I _C = -100mA, V _{CE} = -1.0V
Collector-Emitter Saturation Voltage		V _{CE} (SAT)	_	-0.25	V	I _C = -100mA, I _B = -10mA
Base-Emitter Saturation Voltage		V _{BE(SAT)}	_	-1.2	V	$I_C = -100 \text{mA}, V_{CE} = -1.0 \text{V}$
SMALL SIGNAL CHARACTERISTICS		•		•	•	•
Current Gain-Bandwidth Product		f⊤	50	_	MHz	V _{CE} = -1.0V, I _C = -100mA, f = 100MHz

- Notes: 1. Device mounted on FR-4 PCB, 1 inch x 0.85 inch x 0.062 inch; pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.
 - 2. Short duration test pulse used to minimize self-heating effect.
 - 3. No purposefully added lead.



Ordering Information (Note 4)

Device	Packaging	Shipping
MMBTA55-7-F MMBTA56-7-F	SOT-23	3000/Tape & Reel

Notes: 4. For Packaging Details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

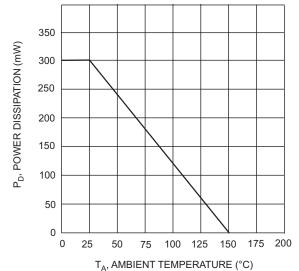
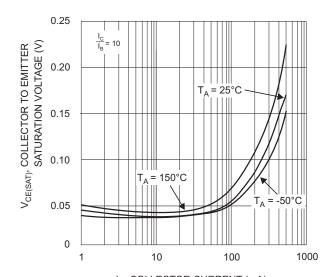
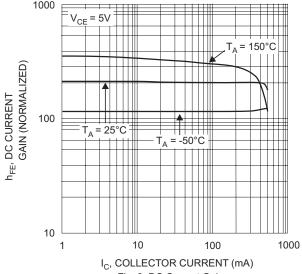
Marking Information

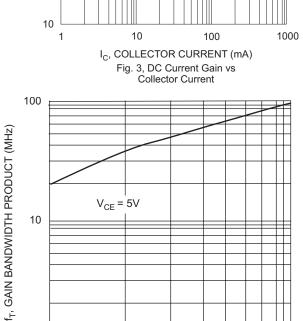
K2x = Product Type Marking Code, ex: K2H = MMBTA55

YM = Date Code Marking
Y = Year ex: N = 2002
M = Month ex: 9 = September

Date Code Key

Year	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Code	J	K	L	М	N	Р	R	S	Т	U	V	W
Month	Jan	Feb	March	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec


Fig. 1, Max Power Dissipation vs Ambient Temperature

I_C, COLLECTOR CURRENT (mA) Fig. 2, Collector Emitter Saturation Voltage vs. Collector Current

1 10 100 100 I_C, COLLECTOR CURRENT (mA) Fig. 5 Gain Bandwidth Product vs. Collector Current

1.0 BASE EMITTER VOLTAGE (V) 0.9 $V_{CE} = 5V$ 8.0 $T_A = -50$ °C 0.7 = 25°C 0.6 0.5 T_A = 150°C 0.4 V_{BE(ON)}, t 0.3 0.2 0.1 0.1 10 100

I_C, COLLECTOR CURRENT (mA)
Fig. 4 Base Emitter Voltage vs. Collector Current

IMPORTANT NOTICE

Diodes, Inc. and its subsidiaries reserve the right to make changes without further notice to any product herein to make corrections, modifications, enhancements, improvements, or other changes. Diodes, Inc. does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

The products located on our website at **www.diodes.com** are not recommended for use in life support systems where a failure or malfunction of the component may directly threaten life or cause injury without the expressed written approval of Diodes Incorporated.