Micropower Undervoltage Sensing Circuits The MC34164 series are undervoltage sensing circuits specifically designed for use as reset controllers in portable microprocessor based systems where extended battery life is required. These devices offer the designer an economical solution for low voltage detection with a single external resistor. The MC34164 series features a bandgap reference, a comparator with precise thresholds and built–in hysteresis to prevent erratic reset operation, an open collector reset output capable of sinking in excess of 6.0 mA, and guaranteed operation down to 1.0 V input with extremely low standby current. The MC devices are packaged in 3–pin TO–226AA, 8–pin SO–8 and Micro8 surface mount packages. The NCV device is packaged in SO–8. Applications include direct monitoring of the 3.0 or 5.0 V MPU/logic power supply used in appliance, automotive, consumer, and industrial equipment. - Temperature Compensated Reference - Monitors 3.0 V (MC34164–3) or 5.0 V (MC34164–5) Power Supplies - Precise Comparator Thresholds Guaranteed Over Temperature - Comparator Hysteresis Prevents Erratic Reset - Reset Output Capable of Sinking in Excess of 6.0 mA - Internal Clamp Diode for Discharging Delay Capacitor - Guaranteed Reset Operation With 1.0 V Input - Extremely Low Standby Current: As Low as 9.0 μA - Economical TO-226AA, SO-8 and Micro8 Surface Mount Packages Pin numbers adjacent to terminals are for the 3–pin TO–226AA package. Pin numbers in parenthesis are for the 8–lead packages. This device contains 28 active transistors. Figure 1. Representative Block Diagram #### ON Semiconductor® http://onsemi.com TO-226AA P SUFFIX CASE 29 SO-8 D SUFFIX CASE 751 Micro8 DM SUFFIX CASE 846A #### PIN CONNECTIONS #### ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet. #### **DEVICE MARKING INFORMATION** See general marking information in the device marking section on page 7 of this data sheet. #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |--|--|--|-------------------------| | Power Input Supply Voltage | V _{in} | -1.0 to 12 | V | | Reset Output Voltage | Vo | -1.0 to 12 | V | | Reset Output Sink Current | I _{Sink} | Internally
Limited | mA | | Clamp Diode Forward Current, Pin 1 to 2 (Note 1) | I _F | 100 | mA | | Power Dissipation and Thermal Characteristics P Suffix, Plastic Package Maximum Power Dissipation @ T _A = 25°C Thermal Resistance, Junction–to–Air D Suffix, Plastic Package Maximum Power Dissipation @ T _A = 25°C Thermal Resistance, Junction–to–Air DM Suffix, Plastic Package Maximum Power Dissipation @ T _A = 25°C Thermal Resistance, Junction–to–Air | P _D
R _{θJA}
P _D
R _{θJA}
P _D
R _{θJA} | 700
178
700
178
520
240 | mW °C/W mW °C/W mW °C/W | | Operating Junction Temperature | T _J | +150 | °C | | Operating Ambient Temperature Range
MC34164 Series
MC33164 Series, NCV33164 | T _A | 0 to +70
- 40 to +125 | °C | | Storage Temperature Range | T _{stg} | - 65 to +150 | °C | NOTE: ESD data available upon request. #### MC34164-3, MC33164-3 SERIES **ELECTRICAL CHARACTERISTICS** (For typical values $T_A = 25$ °C, for min/max values T_A is the operating ambient temperature range that applies [Notes 2 & 3], unless otherwise noted.) | Characteristic | Symbol | Min | Тур | Max | Unit | |---|--|----------------------|----------------------|-------------------|------| | COMPARATOR | · | | | | | | Threshold Voltage High State Output (V_{in} Increasing) Low State Output (V_{in} Decreasing) Hysteresis (I_{Sink} = 100 μ A) | V _{IH}
V _{IL}
V _H | 2.55
2.55
0.03 | 2.71
2.65
0.06 | 2.80
2.80
– | V | | RESET OUTPUT | | | | | | | Output Sink Saturation $ (V_{in} = 2.4 \text{ V}, I_{Sink} = 1.0 \text{ mA}) $ $ (V_{in} = 1.0 \text{ V}, I_{Sink} = 0.25 \text{ mA}) $ | V _{OL} | -
- | 0.14
0.1 | 0.4
0.3 | V | | Output Sink Current (V _{in} , Reset = 2.4 V) | I _{Sink} | 6.0 | 12 | 30 | mA | | Output Off–State Leakage (V _{in} , Reset = 3.0 V) (V _{in} , Reset = 10 V) | ^I R(leak) | -
- | 0.02
0.02 | 0.5
1.0 | μΑ | | Clamp Diode Forward Voltage, Pin 1 to 2 (I _F = 5.0 mA) | V _F | 0.6 | 0.9 | 1.2 | V | | TOTAL DEVICE | | | | | | | Operating Input Voltage Range | V _{in} | 1.0 to 10 | - | _ | V | | Quiescent Input Current V _{in} = 3.0 V V _{in} = 6.0 V | I _{in} | | 9.0
24 | 15
40 | μΑ | #### MC34164-5, MC33164-5 SERIES, NCV33164-5 **ELECTRICAL CHARACTERISTICS** (For typical values T_A = 25°C, for min/max values T_A is the operating ambient temperature range that applies [Notes 5 & 6], unless otherwise noted.) | Characteristic | Symbol | Min | Тур | Max | Unit | |---|----------------------|-----------|------|------|------| | COMPARATOR | <u>.</u> | | | | • | | Threshold Voltage | | | | | V | | High State Output (V _{in} Increasing) | V_{IH} | 4.15 | 4.33 | 4.45 | | | Low State Output (V _{in} Decreasing) | V_{IL} | 4.15 | 4.27 | 4.45 | | | Hysteresis (I _{Sink} = 100 μA) | V_{H} | 0.02 | 0.09 | _ | | | RESET OUTPUT | | | | | | | Output Sink Saturation | V _{OL} | | | | V | | $(V_{in} = 4.0 \text{ V}, I_{Sink} = 1.0 \text{ mA})$ | | _ | 0.14 | 0.4 | | | $(V_{in} = 1.0 \text{ V}, I_{Sink} = 0.25 \text{ mA})$ | | _ | 0.1 | 0.3 | | | Output Sink Current (V _{in} , Reset = 4.0 V) | I _{Sink} | 7.0 | 20 | 50 | mA | | Output Off-State Leakage | ^I R(leak) | | | | μА | | $(V_{in}, \overline{Reset} = 5.0 \text{ V})$ | , , | _ | 0.02 | 0.5 | | | $(V_{in}, \overline{Reset} = 10 V)$ | | _ | 0.02 | 2.0 | | | Clamp Diode Forward Voltage, Pin 1 to 2 (I _F = 5.0 mA) | V _F | 0.6 | 0.9 | 1.2 | V | | TOTAL DEVICE | | | | | | | Operating Input Voltage Range | V _{in} | 1.0 to 10 | - | _ | V | | Quiescent Input Current | I _{in} | | | | μΑ | | $V_{in} = 5.0 \text{ V}$ | "" | _ | 12 | 20 | | | V_{in} = 10 V | | _ | 32 | 50 | | ^{4.} Maximum package power dissipation limits must be observed. $T_{high} = +70^{\circ}C$ for MC34164 = +125°C for MC33164, NCV33164 Figure 1. MC3X164-3 Reset Output Voltage versus Input Voltage Figure 2. MC3X164-5 Reset Output Voltage versus Input Voltage ^{5.} Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible. $T_{low} = 0^{\circ}C \text{ for MC34164}$ $= -40^{\circ}$ C for MC33164, NCV33164 ^{7.} NCV prefix is for automotive and other applications requiring site and change control. Figure 3. MC3X164-3 Reset Output Voltage versus Input Voltage Figure 4. MC3X164-5 Reset Output Voltage versus Input Voltage Figure 5. MC3X164–3 Comparator Threshold Voltage versus Temperature Figure 6. MC3X164–5 Comparator Threshold Voltage versus Temperature Figure 7. MC3X164-3 Input Current versus Input Voltage Figure 8. MC3X164-5 Input Current versus Input Voltage Figure 9. MC3X164-3 Reset Output Saturation versus Sink Current Figure 10. MC3X164–5 Reset Output Saturation versus Sink Current Figure 11. Clamp Diode Forward Current versus Voltage Figure 12. Reset Delay Time (MC3X164–5 Shown) A time delayed reset can be accomplished with the addition of C_{DLY} . For systems with extremely fast power supply rise times (< 500 ns) it is recommended that the RCDLY time constant be greater than 5.0 μ s. $V_{th(MPU)}$ is the microprocessor reset input threshold. Figure 13. Low Voltage Microprocessor Reset | Test Data | | | | | |------------------------|-----------------------|-----------------------|---------------------|--| | V _H
(mV) | ΔV _{th} (mV) | R _H
(Ω) | R_L (k Ω) | | | 60 | 0 | 0 | 43 | | | 103 | 1.0 | 100 | 10 | | | 123 | 1.0 | 100 | 6.8 | | | 160 | 1.0 | 100 | 4.3 | | | 155 | 2.2 | 220 | 10 | | | 199 | 2.2 | 220 | 6.8 | | | 280 | 2.2 | 220 | 4.3 | | | 262 | 4.7 | 470 | 10 | | | 306 | 4.7 | 470 | 8.2 | | | 357 | 4.7 | 470 | 6.8 | | | 421 | 4.7 | 470 | 5.6 | | | 530 | 4.7 | 470 | 4.3 | | Comparator hysteresis can be increased with the addition of resistor R_H . The hysteresis equation has been simplified and does not account for the change of input current l_{in} as V_{in} crosses the comparator threshold (Figure 8). An increase of the lower threshold $\Delta V_{th(lower)}$ will be observed due to l_{in} which is typically 10 μ A at 4.3 V. The equations are accurate to $\pm 10\%$ with R_H less than 1.0 k Ω and R_L between 4.3 k Ω and 43 k Ω . Figure 14. Low Voltage Microprocessor Reset With Additional Hysteresis (MC3X164–5 Shown) 2 (2) 1 (1) Solar Cells 3 (4) Figure 15. Voltage Monitor Figure 16. Solar Powered Battery Charger Figure 17. MOSFET Low Voltage Gate Drive Protection Using the MC3X164-5 #### **ORDERING INFORMATION** | Device | Package | Shipping | |----------------|---------|--------------------------| | MC33164D-3 | SO-8 | 98 Units / Rail | | MC33164D-3R2 | SO-8 | 2500 Units / Tape & Reel | | MC33164DM-3R2 | Micro8 | 4000 Units / Tape & Reel | | MC33164P-3 | TO-92 | 2000 Units / Box | | MC33164P-3RA | TO-92 | 2000 Units / Tape & Reel | | MC33164P-3RP | TO-92 | 2000 Units / Pack | | MC33164D-5 | SO-8 | 98 Units / Rail | | MC33164D-5R2 | SO-8 | 2500 Units / Tape & Reel | | NCV33164D-5R2* | SO-8 | 2500 Units / Tape & Reel | | MC33164DM-5R2 | Micro8 | 4000 Units / Tape & Reel | | MC33164P-5 | TO-92 | 2000 Units / Box | | MC33164P-5RA | TO-92 | 2000 Units / Tape & Reel | | MC33164P-5RP | TO-92 | 2000 Units / Pack | | MC34164D-3 | SO-8 | 98 Units / Rail | | MC34164D-3R2 | SO-8 | 2500 Units / Tape & Reel | | MC34164DM-3R2 | Micro8 | 4000 Units / Tape & Reel | | MC334164P-3 | TO-92 | 2000 Units / Box | | MC34164P-3RP | TO-92 | 2000 Units / Pack | | MC34164D-5 | SO-8 | 98 Units / Rail | | MC34164D-5R2 | SO-8 | 2500 Units / Tape & Reel | | MC34164DM-5R2 | Micro8 | 4000 Units / Tape & Reel | | MC334164P-5 | TO-92 | 2000 Units / Box | | MC34164P-5RA | TO-92 | 2000 Units / Tape & Reel | | MC34164P-5RP | TO-92 | 2000 Units / Pack | ^{*}NCV33164: $T_{low} = -40$ °C, $T_{high} = +125$ °C. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and change control. #### **MARKING DIAGRAMS** #### **PACKAGE DIMENSIONS** TO-226AA **P SUFFIX** CASE 29-11 **ISSUE AL** #### NOTES: - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. CONTOUR DO PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM. | | INCHES | | MILLIN | IETERS | |-----|--------|-------|--------|--------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.175 | 0.205 | 4.45 | 5.20 | | В | 0.170 | 0.210 | 4.32 | 5.33 | | С | 0.125 | 0.165 | 3.18 | 4.19 | | D | 0.016 | 0.021 | 0.407 | 0.533 | | G | 0.045 | 0.055 | 1.15 | 1.39 | | Н | 0.095 | 0.105 | 2.42 | 2.66 | | J | 0.015 | 0.020 | 0.39 | 0.50 | | K | 0.500 | | 12.70 | | | L | 0.250 | | 6.35 | | | N | 0.080 | 0.105 | 2.04 | 2.66 | | P | | 0.100 | | 2.54 | | R | 0.115 | | 2.93 | | | ٧ | 0.135 | | 3.43 | | #### **SO-8 D SUFFIX** CASE 751-07 **ISSUE W** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. - SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIMETERS | | INCHES | | |-----|-------------|-------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 4.80 | 5.00 | 0.189 | 0.197 | | В | 3.80 | 4.00 | 0.150 | 0.157 | | C | 1.35 | 1.75 | 0.053 | 0.069 | | D | 0.33 | 0.51 | 0.013 | 0.020 | | G | 1.27 | 7 BSC | 0.050 BSC | | | Н | 0.10 | 0.25 | 0.004 | 0.010 | | J | 0.19 | 0.25 | 0.007 | 0.010 | | K | 0.40 | 1.27 | 0.016 | 0.050 | | M | 0 ° | 8 ° | 0 ° | 8 ° | | N | 0.25 | 0.50 | 0.010 | 0.020 | | S | 5.80 | 6.20 | 0.228 | 0.244 | #### **PACKAGE DIMENSIONS** #### Micro8 **DM SUFFIX** CASE 846A-02 ISSUE E - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. | | MILLIMETERS | | INC | HES | |-----|-------------|----------|-------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 2.90 | 3.10 | 0.114 | 0.122 | | В | 2.90 | 3.10 | 0.114 | 0.122 | | С | | 1.10 | | 0.043 | | D | 0.25 | 0.40 | 0.010 | 0.016 | | G | 0.65 | 0.65 BSC | | BSC | | Н | 0.05 | 0.15 | 0.002 | 0.006 | | J | 0.13 | 0.23 | 0.005 | 0.009 | | K | 4.75 | 5.05 | 0.187 | 0.199 | | L | 0.40 | 0.70 | 0.016 | 0.028 | # **Notes** # **Notes** Micro8 is a trademark of International Rectifier. ON Semiconductor is a trademark and is a registered trademark of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. #### **PUBLICATION ORDERING INFORMATION** #### Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada **JAPAN**: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com ON Semiconductor Website: http://onsemi.com For additional information, please contact your local Sales Representative.