

SML400HB01MF

Attributes:

- -aerospace build standard
- -high reliability
- -lightweight
- -metal matrix base plate
- -AIN isolation
- -Mosfet module

Maximum rated values/Electrical Properties

Source-drain voltage V _{DSS}	$ \begin{array}{c c} Tj = 25C \text{ to } 175C & V_{DSS} \\ Rgs = 1M\Omega & \end{array} $		100	V
DC Collector Current I _{D25}	Tc=25C Tc=25C,Tvj=175C	I _c , nom Ic	400 400	A
Repetitive peak Drain Current	tp=1msec,Tc=80C	I_{crm}	600	Α
Total Power Dissipation	Te=25C	P_{tot}	1700	W
Gate-emitter peak voltage	Continuous Transient	V_{GS}	+/-20 =/-30	V V
Repetitive Peak Forward Current	tp=1msec	${ m I_{frm}}$	600	A
Isolation voltage	RMS, 50Hz, t=1min	V_{isol}	2500	V

			MIN	TYP	MAX	
Drain-source breakdown voltage	$I_D=250\mu A, V_{GS}=0V,$ Tc=25C	$\mathrm{BV}_{\mathrm{DSS}}$	100			V
Gate Threshold voltage	I_D =8mA, V_{DS} = V_{GS} , Tvj =25C	Vge _(th)	3.0		5	V
C _{lee} C _{oee}	f=1MHz,Tvj=25C,Vgs=0V,V _{DS} =0V			15200 5800 1720		pF pF pF
C,,,, Q _{g(on)} Q _{ge}	Tvj=25C,V _{DS} =0.5V _{DSS} ,ID=0.	470 100 270		nC nC nC		
Gate-source leakage current	V _{GS} =+/-20V, V _{GS} =0V,Tvj=25C	I_{GSS}		1	+/-200	nA
Drain source leakage current	V _{DS} =V _{GS} =20V, Tvj=25C Tvj=150C Tvj=175C	$I_{ m DSS}$			25 1 5	μΑ mA mA

gfs	Vgs=10V, I _D =0.5I _{D25}		60	97	S
t _{d(on)} t _r t _{d(off)} t _r	Ic=120A,V _{DS} =0.5VDSS,V _{GS} =10 V Rge=3.3Ω,L=30nH Tvj=25C			50 60 150 90	ns ns Ns ns
Stray Module inductance		$L_{\sigma ce}$		30	nН
Terminal-chip resistance		R _c		1.0	mΩ

Source –Drain Diode characteristics

TYP MAX

DC Forward Diode Current Is	$T_c=25C V_{GS}=0V$	I_s		400	A
Repetitive forward current		Ism		800	A
	$I_{P}=I_{S}$, $V_{GS}=0V$ $t_{P}=300\mu sec$, duty cycle=2%	$ m V_{SD}$		1.5	V
Peak reverse recovery current	If=50A, -di/dt=100A/μsec V _R =50V,Vgs=0V,Tvj=25C	I_{rm}	12		A
Reverse recovery time	If=50A, -di/dt=100A/μsec Vr=50V,Vgs=0V,Tvj=25C	trr		300	ns
Recovered charge	If=50A, -di/dt=100A/µsec Vr=50V,Vgs=0V,Tvj=25C	Qrm	0.8		μС

Thermal Properties			Min	Typ	Max	
Thermal resistance junction to case	Igbt Diode	$R_{ heta J ext{-}C}$			0.09 0.11	K/W
Thermal resistance case to heatsink		$R_{ heta C ext{-}hs}$		0.03		K/W
Maximum junction temperature		Tvj			175	С
Maximum operating temperature		Тор	-55		175	С
Storage Temperature		Tstg	-55		175	С

Fig. 1. Output Characteristics @ 25°C 400 V_{GS} = 10∨ 300 ID - Amperes 87 200 100 6V 0 0.8 0.6 0.2 0.4 1 1.2 1.4 1.6 V_{DS} - Volts

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders

Fig. 2. Extended Output Characteristics @ 25°C

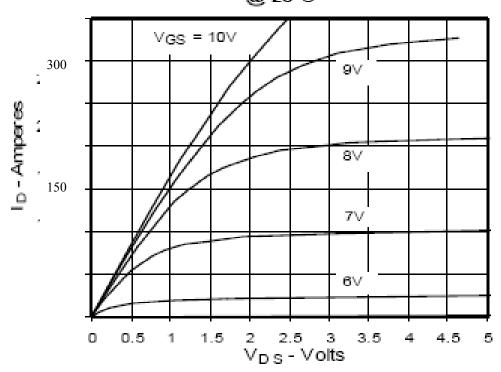


Fig. 3. Output Characteristics @ 150°C

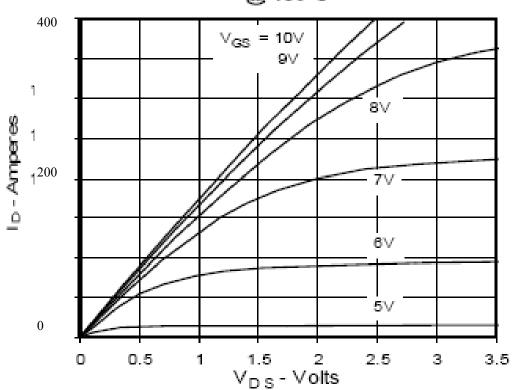


Fig. 4. R_{DS(on)} Normalized to 0.5 I_{D25} Value vs. Junction Temperature

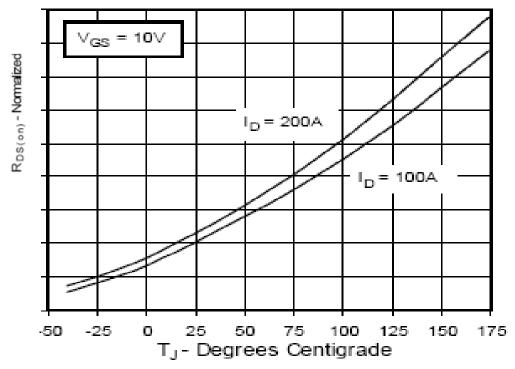


Fig. 5. R_{DS(on)} Normalized to 0.5 I_{D25} Value vs. Drain Current

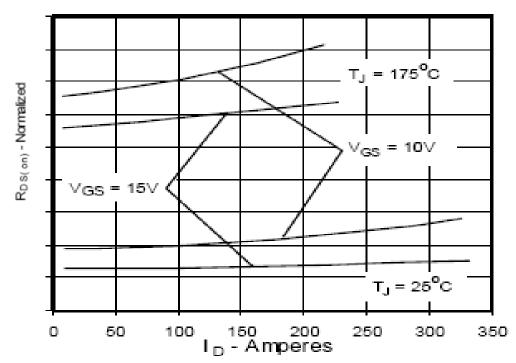


Fig. 6. Drain Current vs. Case
Temperature

160A

Section 25 50 75 100 125 150 175
T_C - Degrees Centigrade



Fig. 8. Transconductance

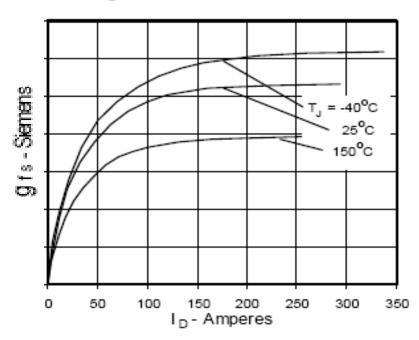
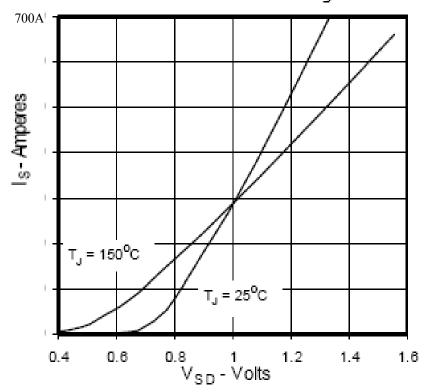
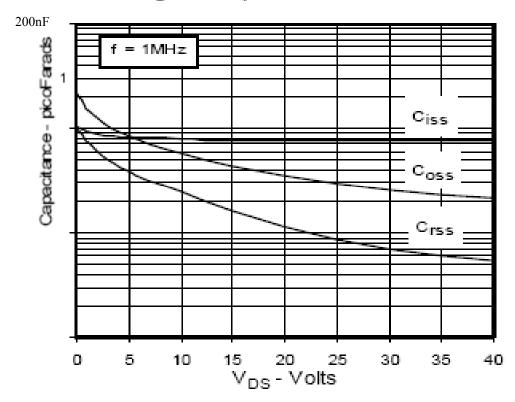
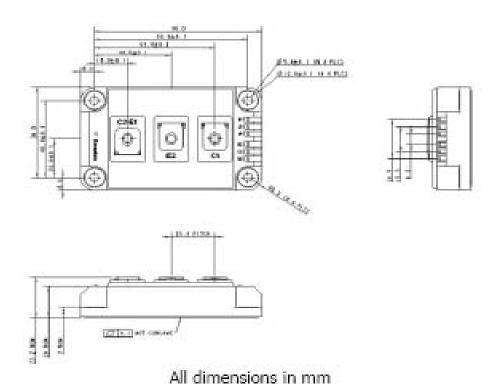


Fig. 9. Source Current vs. Source-To-Drain Voltage



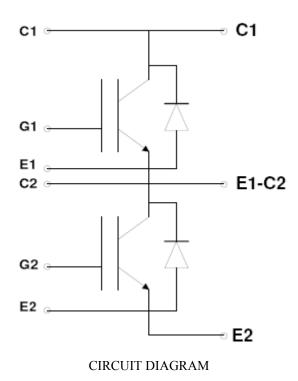

Fig. 10. Gate Charge 20 I_D = 100A I_G = 10mA 75 100 125 150 175 200 225 250 Q _G - nanoCoulombs 25

Fig. 11. Capacitance

