SILICON RECTIFIER DIODES

Glass-passivated double-diffused rectifier diodes in TO-220 plastic envelopes, intended for power rectifier applications.

The series consists of the following types:

Normal polarity (cathode to base plate): BY249-300 and BY249-600. Reverse polarity (anode to base plate): BY249-300R and BY249-600R.

QUICK REFERENCE DATA

			BY249-300(R)	600(R	<u>)</u>
Repetitive peak reverse voltage	v_{RRM}	max.	300	600	٧
Average forward current	I _F (AV)	max.	6	.5	Α
Non-repetitive peak forward current	FSM	max.	•	50	Α

MECHANICAL DATA (see next page for polarity of connections)

Dimensions in mm

Fig. 1 TO-220AC

Note: The exposed metal mounting base is directly connected to tag 1.

Accessories supplied on request: see data sheets Mounting instructions and accessories for TO-220 envelopes.

MECHANICAL DATA (continued)

Polarity of connections:

	BY249-300 BY249-600	BY249-300R BY249-600R
base plate	cathode	anode
tag 1	cathode	anode
tag 2	anode	cathode

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134).

Voltages*		BY249	-300(R)	600(R)	
Non-repetitive peak reverse voltage	V _{RSM}	max.	300	600	V
Repetitive peak reverse voltage	v_{RRM}	max.	300	600	V
Crest working reverse voltage	V_{RWM}	max.	200	400	V
Continuous reverse voltage	v_R	max.	200	400	V
Currents					
Average forward current;					
sinusoidal; up to $T_{mb} = 110$ °C		^I F(AV)	max.	6.5	Α
sinusoidal; at T _{mb} = 125 °C		¹ F(AV)	max.	4.0	Α
R.M.S. forward current		F(RMS)	max.	9.5	Α
Repetitive peak forward current;					
t = 10 ms; half sine-wave		^I FRM	max.	60	Α
Non-repetitive peak forward current;					
t = 10 ms; half sine-wave;					
T _j = 150 ^o C prior to surge;					
with re-applied V _{RWMmax}		^I FSM	max.	60	Α
I^2 t for fusing; t = 10 ms		12 t	max.	18	$A^2 s$
Temperatures					
Storage temperature		T_{stg}	40 to	+150	oC
Junction temperature		T_{j}	max.	150	οС
CHARACTERISTICS					
Forward voltage					
$I_F = 20 \text{ A}; T_j = 25 ^{\circ}\text{C}$		VF	<	1.6	V**
$I_F = 5 \text{ A}; T_j = 100 ^{\circ}\text{C}$		٧F	<	1.05	V**
Reverse current					
$V_R = V_{RWMmax}$; $T_j = 125 {}^{\circ}C$		1 _R	<	0.4	mΑ

^{*}To ensure thermal stability, R $_{th\ j\cdot a}$ < 15 °C/W for continuous reverse voltage. **Measured under pulse conditions to avoid excessive dissipation.

THERMAL RESISTANCE

From junction to mounting base	$R_{th j-mb} = 4.2$ °C/W
Transient thermal impedance; t = 1 ms	$Z_{th i-mb} = 0.46 ^{\circ}\text{C/W}$

Influence of mounting method

1. Heatsink mounted with clip (see mounting instructions)

Thermal resistance from mounting base to heatsink

a. with heatsink compound	$R_{th\ mb-h} = 0.3$	oC/M
b. with heatsink compound and 0.06 mm maximum mica insulator	$R_{th\ mb-h} = 1.4$	oC/M
c. with heatsink compound and 0.1 mm maximum mica insulator (56369)	$R_{th mb-h} = 2.2$	oC/W
d. with heatsink compound and 0.25 mm maximum alumina		
insulator (56367)	$R_{th mb-h} = 0.8$	oC/M
e. without heatsink compound	$R_{th mb-h} = 1.4$	oC/W

2. Free-air operation

The quoted value of $R_{th\ j-a}$ should be used only when no leads of other dissipating components run to the same tie-point. Thermal resistance from junction to ambient in free air: mounted on a printed-circuit board at a=any lead length.

MOUNTING INSTRUCTIONS

- The device may be soldered directly into the circuit, but the maximum permissible temperature of the soldering iron or bath is 275 °C; it must not be in contact with the joint for more than 5 seconds. Soldered joints must be at least 4.7 mm from the seal.
- 2. The leads should not be bent less than 2.4 mm from the seal, and should be supported during bending. The bend radius must be no less than 1.0 mm.
- It is recommended that the circuit connection be made to tag 1, rather than direct to the heatsink.
- 4. Mounting by means of a spring clip is the best mounting method because it offers:
 - a. a good thermal contact under the crystal area and slightly lower R_{th mb-h} values than screw mounting.
 - b, safe isolation for mains operation.
 - However, if a screw is used, it should be M3 cross-recess pan-head. Care should be taken to avoid damage to the plastic body.
- 5. For good thermal contact heatsink compound should be used between mounting base and heatsink. Values of R_{th mb-h} given for mounting with heatsink compound refer to the use of a metallic-oxide loaded compound. Ordinary silicone grease is not recommended.
- Rivet mounting (only possible for non-insulated mounting)
 Devices may be rivetted to flat heatsinks; such a process must neither deform the mounting tab, nor enlarge the mounting hole.

Fig. 3 The right-hand part shows the interrelationship between the power (derived from the left-hand part) and the maximum permissible temperatures. $a = form \ factor = I_F(RMS)/I_F(AV)$.

 $^{^*}T_{mb}$ scale is for comparison purposes and is correct only for R $_{th\ mb\text{-}a}$ < 19.3 °C/W.

Fig. 4 Maximum permissible non-repetitive r.m.s. forward current based on sinusoidal currents (f = 50 Hz); T_j = 150 $^{\rm O}$ C prior to surge.

Fig. 5 ---- $T_j = 25 \, {}^{\circ}\text{C}; --- T_j = 100 \, {}^{\circ}\text{C}$

Fig. 6