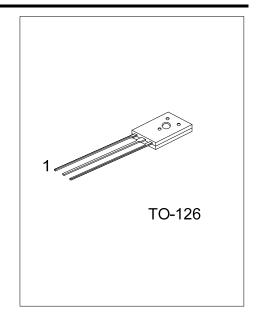
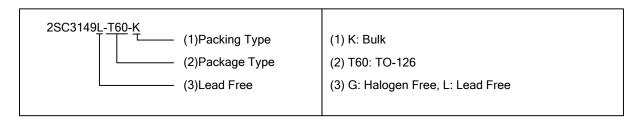
2SC3149

Preliminary


NPN SILICON TRANSISTOR

NPN TRANSISTOR

■ DESCRIPTION


The UTC **2SC3149** are series of NPN silicon planar transistor, and its suited to be used in power amplifier applications.

■ FEATURES

ORDERING INFORMATION

Ordering Number		Package	Pin Assignment			Dooking	
Lead Free	Halogen Free	Fackage	1	2	3	Packing	
2SC3149L-T60-K	2SC3149G-T60-K	TO-126	В	С	Е	Bulk	

www.unisonic.com.tw 1 of 2

^{*} Suit for power amplifier applications

■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Collector-Base Voltage	V _{CBO}	1200	V
Collector-emitter voltage	V _{CEO}	800	V
Emitter-Base Voltage	V _{EBO}	7	V
Collector Current	Ic	0.5	A
Collector Dissipation	Pc	2	W
Junction Temperature	T _J	+150	$^{\circ}$ C
Storage Temperature	T _{STG}	-55 ~ +150	$^{\circ}$

Note Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS (T_a=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Collector-Base Breakdown Voltage	BV_CBO	I _C =1mA, I _E =0A	1200			V
Collector-Emitter Breakdown Voltage	BV_CEO	I _C =5mA, I _B =0A	800			V
Emitter-Base Breakdown Voltage	BV_{EBO}	I _E =1mA, I _C =0A	7			V
Collector Cutoff Current	I _{CBO}	V _{CB} =800V, I _E =0A			10	μА
Emitter Cutoff Current	I _{EBO}	V _{EB} =5V, I _C =0A			10	μА
DC Current Gain (Note)	h _{FE}	I _C =100mA, V _{CE} =5V	10		40	
Collector-Emitter Saturation Voltage	$V_{CE(SAT)}$	I _C =200mA, I _B =40mA			0.8	V
Base-Emitter Saturation Voltage	$V_{BE(SAT)}$	I _C =200mA, I _B =40mA			1.5	V
Current Gain Bandwidth Product	f⊤	I _C =100mA, V _{CE} =10V		15		MHz
Output Capacitance	Сов	V _{CB} =10V, f=1MHz		30		pF
Turn-On Time	ton				1.0	μs
Storage Time	t _{STG}	I _C =1A, I _{B1} =0.2A, I _{B2} =-0.4A, R _I =400Ω, V _{CC} =400V			3.0	μs
Fall Time	t_{F}	1\(\400\(\frac{1}{2}\), \(\frac{1}{2}\)CC-400\(\frac{1}{2}\)			0.7	μs

Note: Pulse test: Pulse width=300µs, Duty Cycle ≤ 2%

■ CLASSIFICATION OF h_{FE}

RANK	K	L	M
RANGE	10 ~ 20	15 ~ 30	20 ~ 40

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.