

SEMITOP[®] 3

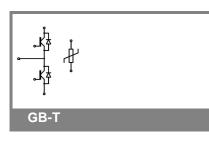
IGBT Module

SK75GB066T

Target Data

Features

- Compact design
- One scre mounting
- Heat transfer and isolation trough direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- CAL HD technology FWD
- Integrated NTC temperature sensor


Typical Applications*

Remarks

• V_{isol} = 3000V AC,50Hz,1s

Absolute	Maximum Ratings	T _s =	25 °C, unless otherwise s	specified	
	_		Values	Units	
IGBT					
V _{CES}	T _j = 25 °C		600	V	
I _C	T _j = 175 °C	T _s = 25 °C	77	А	
		T _s = 70 °C	60	А	
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		150	А	
V _{GES}			± 20	V	
t _{psc}	V_{CC} = 360 V; $V_{GE} \le 20$ V; VCES < 600 V	T _j = 150 °C	6	μs	
Inverse D	Diode				
I _F	T _j = 175 °C	T _s = 25 °C	62	А	
		T _s = 70 °C	47	А	
I _{FRM}	I _{FRM} = 2 x I _{Fnom}		150	А	
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	395	А	
Module					
I _{t(RMS)}				А	
T _{vj}			-40 +175	°C	
T _{stg}			-40 +125	°C	
V _{isol}	AC, 1 min.		2500	V	

Characteristics T _s =			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
V _{GE(th)}	V_{GE} = V_{CE} , I_C = 1,2 mA		5	5,8	6,5	V	
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C			0,0038	mA	
		T _j = 125 °C				mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			600	nA	
		T _j = 125 °C				nA	
V _{CE0}		T _j = 25 °C		0,8	1,1	V	
		T _j = 150 °C		0,7	1	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		8	10	mΩ	
		T _j = 150°C		12,7	14	mΩ	
V _{CE(sat)}	I _{Cnom} = 75 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,45	1,85	V	
		T _j = 150°C _{chiplev.}		1,65	2,05	V	
C _{ies}				4,7		nF	
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,3		nF	
C _{res}				0,145		nF	
Q _G	V _{GE} = -7V+15V			700		nC	
t _{d(on)}				95		ns	
t,	$R_{Gon} = 16 \Omega$	V _{CC} = 300V		50		ns	
E _{on}	di/dt = 2250 A/µs	I _C = 75A		3,1		mJ	
t _{d(off)} t	R _{Goff} = 16 Ω di/dt = 2250 A/μs	T _j = 150 °C V _{GE} = -7/+15 V		541 70		ns ns	
t _f E _{off}	anar - 2200 Avµ3	• GE - 77 • 13 V		2,8		mJ	
R _{th(j-s)}	per IGBT	1		0,94		K/W	

SEMITOP[®] 3

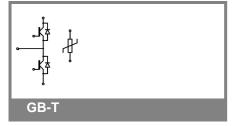
IGBT Module

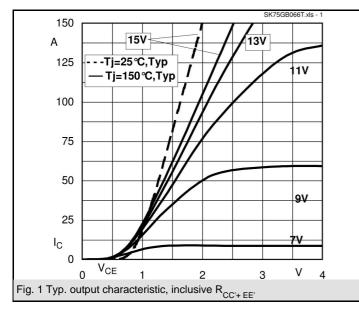
Target Data

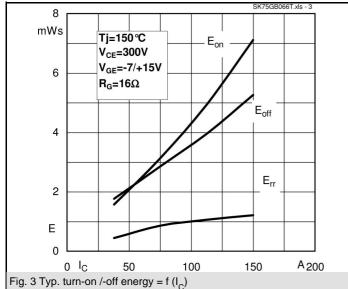
Features

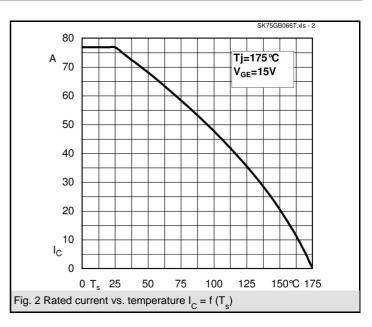
- Compact design
- One scre mounting
- Heat transfer and isolation trough direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- CAL HD technology FWD
- Integrated NTC temperature sensor

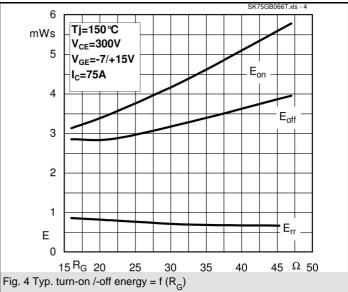
Typical Applications*


Remarks


V_{isol} = 3000V AC,50Hz,1s


Characte						
Symbol	Conditions		min.	typ.	max.	Units
Inverse D						
$V_F = V_{EC}$	I_{Fnom} = 75 A; V_{GE} = 0 V			1,35		V
		$T_j = 150 \ ^{\circ}C_{chiplev.}$		1,31		V
V _{F0}		T _j = 25 °C				V
		T _j = 150 °C		0,85		V
r _F		T _j = 25 °C				mΩ
		T _j = 150 °C		7,8		mΩ
I _{RRM}	I _F = 75 A	T _j = 150 °C		60		А
Q _{rr}	di/dt = 2250 A/µs	2		6		μC
E _{rr}	V _{CC} = 300V			0,85		mJ
R _{th(j-s)D}	per diode			1,55		K/W
M _s	to heat sink		2,5		2,75	Nm
w				60		g
Tempera	ture sensor					
R ₁₀₀	T _s = 100°C (R ₂₅ =5kΩ)		4	93±5%		Ω


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

