
Rev. 0.1 2/12 Copyright © 2012 by Silicon Laboratories AN667

AN667

GETTING STARTED WITH THE SILICON LABS
PRECISION32™ IDE

1. Introduction

This application note describes the Precision32™ Integrated Development Environment (IDE) for the Silicon Labs
32-bit microcontrollers (SiM3xxxx). This IDE is based on the Eclipse platform.

2. Key Points

Importing and building projects with the Precision32 IDE

IDE Overview

Debugging with the Precision32 IDE

Getting Started: Blinky Example

3. Relevant Documentation

Precision32 Help: In the Precision32 IDE, go to HelpHelp Contents

Eclipse documentation: http://help.eclipse.org/indigo/index.jsp

4. Hardware Requirements

The Precision32 IDE has the following hardware requirements:

A standard x86 PC with 1 GB RAM minimum (2 GB recommended) and 500 MB+ of available disk space,
running one of the following operating systems (both 32-bit and 64-bit systems are supported):
Microsoft® Windows XP (SP2 or greater)
Microsoft® Windows Vista
Microsoft® Windows 7

An internet connection is required to request and activate license keys.

http://help.eclipse.org/indigo/index.jsp

AN667

2 Rev. 0.1

5. Workspaces

A workspace in the Precision32 IDE is a grouping of active projects. The workspace contains the top-level IDE
settings, including the global defaults, view window positions, and the projects in the workspace. The workspace
information is contained in the metadata (.metadata) subdirectory in the workspace directory. Any projects added to
the workspace will be copied to this location if the copy projects into workspace option is selected.

After launching Precision32, the workspace dialog shown in Figure 1 prompts for a workspace location. To select a
workspace, either browse to an existing workplace or select a new workspace location.

Figure 1. Selecting a Workspace

To change the workspace while the IDE is open, go to FileSwitch Workspace.

AN667

Rev. 0.1 3

6. Activating Precision32 IDE

Prior to registering the Precision32 IDE, the size of the debug image is limited to 8 kB and Trace functionality is
disabled.

To register the Precision32 IDE, follow the instructions on the initial landing page after opening the software. This
process will require an internet connection.

1. In the IDE, go to HelpProduct ActivationCreate Serial Number and Activate.

2. Write down the displayed serial number or copy it to the clipboard.

3. Press OK and a web browser will open on the Activations page. A mysilabs account is required to enter the
serial number in the page.

4. Complete the rest of the form and press the button to request the activation code.

5. Copy the activation code.

6. Navigate to HelpProduct ActivationEnter Activation Code.

7. Enter the activation code and press OK.

Once activated, the landing page will update and all features are available.

Figure 2. Registered Landing Page

AN667

4 Rev. 0.1

7. Projects

A Precision32 project contains files, build options, and project settings. Projects generally exist as a directory
containing sub-directories and files. The project structure seen in the IDE is replicated physically on the disk.
However, a project may also contain linked files or directories which are just pointers to files or folders outside of
the project directory.

7.1. Project Structure
The projects generated by the Silicon Labs AppBuilder and the SDK follow a recommended project structure.
These projects have three categories of source files:

1. The my* files and any user generated files are located in a src subdirectory under the project directory.
AppBuilder will generate my* files if they do not exist, but will not modify existing copies. This ensures that
user updates to my* files are safe when re-exporting a project from AppBuilder.

2. Generated (g*) files are located in src\generated. These files contain all the automatically generated
AppBuilder code. These files will always be overwritten when a project is re-exported, and any user
changes to these files will be lost.

3. The si32 SDK firmware package consisting of the HAL, code examples, and si32Library is located in a
linked folder at C:\SiLabs\32bit\si32-x.y by default, where x is the major version and y is the minor
version.

Each project is compiled against a version of the HAL or si32Library.

7.1.1. Setting the Silicon Labs SDK Path

The Silicon Labs HAL revision is selected using the drop-down menu in the Precision32 IDE footer shown in
Figure 3.

Figure 3. Selecting the Silicon Labs SDK Path

A warning is displayed if the IDE cannot find the previously-selected path.

For projects that do not use the Silicon Labs SDK, this drop-down menu can be toggled on or off by clicking on
Silicon LabsShow SDK Selector.

AN667

Rev. 0.1 5

7.2. Creating a New Project
To create a new code project, launch the Silicon Labs AppBuilder software by selecting New Precision32
project... in the Quickstart view to generate the device initialization code for the 32-bit device. Then, checking the
Open After Export option in AppBuilder will automatically open the exported AppBuilder workspace and project in
the IDE.

Figure 4. Automatically Opening a New Workspace

AN667

6 Rev. 0.1

7.3. Importing a Project
To import an existing project such as a Precision32 code example:

1. Select the si32 SDK path as described in “7.1.1. Setting the Silicon Labs SDK Path”.

2. Click the Import SI32 SDK example(s) link in the Quickstart view. If the SDK path is appropriately set, all
available projects in the SDK will automatically populate the Projects area.

3. (Optional) Press the Browse... button to select a device-specific set of examples.

4. Select the checkboxes for the projects to import.

5. Ensure the Copy projects into workspace checkbox is checked.

6. Press the Finish button.

Figure 5 shows the process of importing a project.

When an existing project is imported into a workspace, it will be copied into the workspace directory if the Copy
projects into workspace option is selected. After the import, all changes to the copied files are local and specific
to that workspace, which ensures the master copy of the project is unchanged. If a project is added to a workspace
without making a copy, any modifications to the workspace modify the original project. Any modifications to the
linked SDK files will modify the master copy.

Figure 5. Importing a Project

AN667

Rev. 0.1 7

7.4. Building a Project
Once a project is open and selected in the workspace, the Quickstart view will update with a Build ‘project’
[Debug] option shown in Figure 6. Selecting this option will compile all the files associated with the project. The
output of the build will appear in the Console view.

Section “8. Build Options” discusses the full build options and configurations available.

Figure 6. Building a Project

7.5. Refreshing a Project
The IDE will not immediately reflect files added to a project outside of the IDE. To refresh a project and reload the
references from the disk, right-click on the Project Explorer view and select Refresh as shown in Figure 7.

Figure 7. Refreshing a Project

AN667

8 Rev. 0.1

7.6. Cleaning a Project
To clean the project build files from a workspace directory, select the Clean ‘project’ [Debug] option in the
Quickstart view. Figure 8 shows the Clean menu option.

Figure 8. Cleaning a Project

7.7. Removing a Project from a Workspace
The project can either be removed from the workspace or physically deleted from the disk. To remove a project
from a workspace, right-click on the project name in the Project Explorer view and select Delete. A dialog will
open with a Delete project contents on disk (cannot be undone) option that will physically delete the project
files, if selected.

AN667

Rev. 0.1 9

8. Build Options

Each project stores the project build settings. These settings can be accessed through the ProjectProperties
menu or by right clicking in the Project Explorer view and selecting Properties.

8.1. Settings
The C/C++ BuildSettings section contains most of the build settings for the project. The View build options
for ‘project’ option in the Build and Settings section of the Quickstart view is another way to open this same
build settings view.

The C/C++ BuildSettingsTool Settings view has many options for optimization levels, display warnings, and
other build settings.

The C/C++ BuildSettingsBuild Steps view has options for pre- and post-build steps.

These settings will not need to change for most applications.

8.2. Paths and Symbols
The C/C++ GeneralPaths and Symbols section has settings for the project include paths for each configuration
and language combination. When adding a path, select the Add to all configurations and Add to all languages
options unless the paths should be omitted from configurations or languages. This settings view also contains
libraries and library path information.

8.3. Build Configurations
A build configuration is a named collection of build options. The Precision32 has two build configurations by
default: Debug and Release. The Debug build configuration has no optimization and includes all debug symbols in
the build. The Release build option has high optimization and includes no debug symbols in the build.

AN667

10 Rev. 0.1

9. IDE Layout Overview

The default Precision32 IDE has four main areas: Project Explorer, Code Editor, Quickstart, and Status. These
view windows and areas are completely configurable.

Figure 9. Precision32 IDE Layout Overview

9.1. Project Explorer
The Project Explorer view displays the projects associated with the active workspace. Each project has a set of
subdirectories, though some of these subdirectories may not always be present:

After a successful build, Binaries includes the binary files associated with the project.

Includes contains the external include files outside the project structure.

The Debug folder contains the build information, include make files, object files, and other build outputs.

The src folder contains all of the project source files.

The Project Explorer also displays several icons to provide extra information about the project. A small red x on a
folder indicates that the file didn’t build correctly. In addition, icons indicate when linked resources cannot be found.

Double clicking any files in the Project Explorer will open that file in the Code Editor view.

Each file can also be expanded to show a list of includes, defines, and functions used by that file. Double clicking
one of these will jump to the corresponding line in the file.

Project Explorer
view

Status view

Code Editor
view

Quickstart
view

AN667

Rev. 0.1 11

9.2. Quickstart
The Quickstart view is the primary portal to all Precision32 development tasks. This view will be extended in the
future to include more features and tasks.

Most of the functions available in the Quickstart view are available in other locations in the IDE. However, these
alternate methods sometimes behave differently than the Quickstart link. The Quickstart view is the quickest and
easiest way to navigate the development tasks in the IDE.

9.3. Code Editor
The Code Editor view has many customizable options. This section discusses the default behavior in the
Precision32 IDE.

Hovering over a symbol in the Code Editor view will open a type-specific viewer. For variables, this pop-up viewer
displays the declaration of the variable. The viewer displays an expanded version of macros. Finally, hovering over
a function will display the first few lines of the function.

Right-clicking on a symbol provides a long list of options. For example, selecting SourceCorrect Indentation
will adjust the indentation of the line, and SourceToggle Comment will toggle between commenting or
uncommenting the line. The Declarations, References, Search Text options will do various searches and open a
Search view in the Status view.

The panel to the right of the scroll bar displays tags as shown in Figure 10. A red tag here indicates a build error,
while a yellow tag indicates a warning. A blue tag indicates an informational message. Hovering over the tag with
the mouse cursor provides more information about the problem.

Figure 10. Code Editor Tags

AN667

12 Rev. 0.1

9.4. Status
The Status area contains status information for the project. The Console view contains context-sensitive
information. For example, after clicking the Build ‘project’ [Debug] link in the Quickstart view, the Console view
displays the build feedback; during a debugging session, the Console view can display debugging printf()
information.

Clicking on a project or other element may change or restrict the information displayed in the Console view. The
Display Selected Console button on the right side of the Console view shown in Figure 11 can be used to
manually switch between consoles.

Figure 11. Display Selected Console Button

Any build errors in the Console view will be highlighted in red. Double clicking on an error will jump to the error in
code.

The Console view for each process (building or debugging) is reset upon the reinitialization of that process. For
example, the console with build errors for a project will reset when another build of the same project starts.

9.4.1. Problems View

The Problems view in the Status view aggregates all errors and warnings encountered during a build and displays
them in a hierarchical fashion. This saves the need to search through the build log to find a list of the errors in a
multiple-file project. Double-clicking on these entries will jump to the error or warning in the corresponding file.
Figure 12 shows the Problems view.

Figure 12. Console Problems View

9.4.2. Other Views

The Precision32 IDE has many options for additional tabs in the Status view area. These views can be added by
using WindowShow ViewOther.

AN667

Rev. 0.1 13

9.5. Perspectives
A perspective in the Precision32 IDE is a collection of views and their placement. The current perspective is
highlighted in the upper-right corner of the IDE view as shown in Figure 13. Additional perspectives can be added.

Figure 13. IDE Perspectives

Selected
Perspective

AN667

14 Rev. 0.1

10. Debugging

The Debug ‘project’ [Debug] link in the Quickstart view starts a debugging session. Starting a debug session will
automatically recompile the project (if required), connect to and Flash the device, and run to first line of main(). The
IDE will automatically open a Debug view if is not open when a debugging session begins.

To restart a debug session, first exit debug mode to free the debug adapter by clicking the red square Terminate
button. Then, press the Debug ‘project’ [Debug] link in the Quickstart view.

When debugging, hovering over a symbol will have context-sensitive information. For example, hovering over a
function in debug mode shows the address of the function instead of the first lines of code.

Figure 14 shows the default debug configuration of the IDE.

Figure 14. Debugging in the Precision32 IDE

AN667

Rev. 0.1 15

10.1. The printf() Function
The redlib semi-hosting library is used by default to route printf() statements to the Console view. Projects
compiled using the semi-hosting library will hang when printf() statements are encountered and the device is not
connected to the IDE. Projects built with the no-host library will work properly without the IDE, but will not have
printf statements directed to the Console view.

To switch the library used when building the project:

Open the myLinkerOptions_p32.ld file located in the project directory in any text editor.

To enable debugging printf(), uncomment line 6 of the file (GROUP(libcr_semihost.a libcr_c.a
libcr_eabihelpers.a)) and comment out line 7 of the file.

To enable normal printf(), uncomment line 7 of the file (GROUP(libcr_nohost.a libcr_c.a
libcr_eabihelpers.a)) and comment out line 6 of the file.

Figure 15 shows the printf() options in the linker file.

Figure 15. Switching Printf() Options

10.2. Debug View
The Debug view shown in Figure 16 has debugging control buttons and the stack trace view. The buttons at the
top of the view can run (Resume), stop (Pause), and reset (Restart) the device. The Terminate button exits
debug mode.

When halted at a breakpoint, the Debug view has options to step into, over, and out of functions.

The code view is lined with the stack trace, and highlighting a stack call will jump to that call in code. The stack
viewer shows the device process stack (GDB Debugger) and entries for the host GDB and debug process.

Figure 16. Debug View

Uncomment
for debug

printf()

Uncomment
for release

printf()

Terminate debug
session

Step Into

Step Over

Run / Resume

Reset / Restart

Stop / Pause

AN667

16 Rev. 0.1

10.3. Breakpoints
Add a breakpoint to a project by double-clicking on a blue area to the left of the Code Editor view. Lines that are
not marked with blue are ineligible for breakpoints.

The Breakpoint view in Figure 17 shows the current breakpoints and has options to enable or disable breakpoints
without removing them. Double-clicking on breakpoint jumps to the related code in the Code Editor view.

Figure 17. Breakpoint View

When stopped at a breakpoint, right-clicking on the Code Editor enables options to run to a particular line of code
or add variables to the Expressions watch view.

Breakpoint

Breakpoint
window

AN667

Rev. 0.1 17

10.4. Peripherals
The Peripherals view contains a list of peripherals for the device connected to the IDE. Selecting the checkbox
next to a peripheral adds the peripheral to the Memory view. If the Memory view is not visible when a peripheral is
added, the IDE focus will switch to the Memory view.

Figure 18 displays the Peripherals view.

Figure 18. Peripherals View

Peripherals
window

Select the
peripheral

Memory
window

AN667

18 Rev. 0.1

10.5. Memory
The Memory view performs all memory viewing, which includes the device peripherals. For peripherals, the
Memory view has a RegistersBit Fields hierarchy. Hovering the mouse cursor over a register or bit field
causes a verbose tool tip to open. This view allows the state of the device to be changed while stopped at a
breakpoint.

Non-peripheral memory views are added to the Memory view by selecting the green icon.

Figure 19 shows the Memory view.

Figure 19. Memory View

Add new
memory area

Hovering reveals
additional

information

AN667

Rev. 0.1 19

10.6. Core Registers
The Core Registers view shown in Figure 20 displays the core registers of the device. Some core peripherals
such as the NVIC are included with the peripherals.

Figure 20. Core Registers View

Core Registers
window

AN667

20 Rev. 0.1

10.7. Expressions
The Expressions view opens automatically when a new watch variable is added by right-clicking on the Code
Editor view and selecting Add Watch Expression.... This view displays the contents of variables, structures, and
other data types added to the watch list.

Figure 21 shows the Expressions view.

Figure 21. Expressions View

Expressions
window

AN667

Rev. 0.1 21

11. Getting Started: Blinky Example

To run and debug the Blinky example:

1. Open the Precision32 IDE.

2. (Optional) Register the IDE using the steps listed in “6. Activating Precision32 IDE”.

3. Set the Silicon Labs SDK path (C:\SiLabs\32bit\si32-x.y by default) in the drop-down menu at the bottom
of the IDE.

4. Import the Blinky example project:

a. Click the Import SI32 SDK example(s) link in the Quickstart view.

b. Select the checkbox for the Blinky project.

c. Select the Copy projects into workspace checkbox.

d. Press the Finish button.

5. Select the Blinky project in the Project Explorer view.

6. Build the project by selecting QuickstartBuild ‘Blinky’ [Debug].

7. Connect the Silicon Labs Debug Adapter ribbon cable to the header on the MCU card.

8. Connect the Silicon Labs Debug Adapter to the PC.

9. Start a debug session by selecting QuickstartDebug ‘Blinky’ [Debug].

10. Press the DebugResume button to run the code. The LEDs on the MCU card will blink and the
Console view will print the status of the switches.

Figure 22. Blinky Example

AN667

22 Rev. 0.1

CONTACT INFORMATION
Silicon Laboratories Inc.

400 West Cesar Chavez
Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032

Please visit the Silicon Labs Technical Support web page:
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx
and register to submit a technical support request.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

https://www.silabs.com/support/pages/contacttechnicalsupport.aspx

