

STRUCTURE Silicon Monolithic Integrated Circuit

PRODUCT SERIES 7-Channel Switching Regulator Controller for Digital Camera

TYPE BD9353MWV

PIN ASSIGNMENT Fig.1 BLOCK DIAGRAM Fig.1 PACKAGE Fig.2

Functions Power supply voltage 2.2~5.5V(at start-up), 2.05~5.5V(after start-up)

- CH1step-down converter, CH2cross converter, CH3 step-down converter, CH4 step-up converter
 CH5 inverting converter for CCD, CH6 boost converter for CCD, CH7 boost converter for LED
- All Internal Power MOSFETs
- Built-In MOSFETs for synchronous rectifying action mode on CH1~4
- Built-In feedback resistors on CH2
- All channels contain internal compensation between inputs outputs of error amps
- Contains sequence control circuit for CH1~4
- Operating frequency 1.5MHz(CH1,3,4), 750KHz (CH2,5,6,7)
- Built-In Short-circuit Protection (SCP)
- CH6 have high side switches with soft start function
- Built-In Over voltage Protection (OVP)
- Thermally enhanced UQFN036V5050 package (5mm × 5mm, 0.4mm pitch)

OAbsolute maximum ratings(Ta=25°C)

Parameter	Symbol	Limit	Unit
	VCC,Hx13,Hx2, Hx4,Hx567,VO2,HS6L	−0.3~7	٧
	STB1234,56	−0.3~7	V
Power Input Voltage	PWM7	−0.3~7	V
	Hx5 - Lx5	-0.3~15	٧
	Lx6	-0.3~20	٧
	Lx7,VO7	-0.3∼21	V
	IomaxLx1	±0.8	Α
	IomaxHx2	±1.5	Α
	IomaxHx3	±0.8	Α
Output current	IomaxHx4,Lx4	±2.2	Α
	IomaxHx5	±1.5	Α
	IomaxHS6L	±1.2	Α
	IomaxLx6∼7	±1.2	Α
Power Dissipation	Pd	0.88 *1	W
Operating Temperature	Topr	−25~+85	°C
Storage Temperature	Tstg	−55∼+150	°C
Junction Temperature	Tjmax	+150	°C

^{*1} Should be derated by 7.04mW/°C at Ta=25°C or more. When mounted on a glass epoxy PCB of 74.2mm×74.2 mm×1.6 mm

ORecommended operating conditions

	Conselle al		Limit			
Parameter	Symbol	MIN	TYP	MAX	Unit	
Power Supply Voltage (at start-up)	VCC1	2.2	-	5.5	V	
Power Supply Voltage (after start-up)	VCC2	2.05	-	5.5	V	
VREF Pin Connecting Catacitor	CVREF	0.047	0.1	0.47	μF	
VREGA Pin Connecting Capacitor	CVREGA	0.47	1.0	4.7	μF	
PWM7 frequency	fpwm	20	-	100	kHz	
[Oscillator]						
Oscillator (CH1,3,4)	fosc	0.8	1.5	1.8	MHz	
OSC Timing Resistor	RT	47	62	120	kΩ	

OElectrical characteristics (Ta=25°C, VCC=3V, RT=62k Ω , STB1 \sim 6=3V,PWM7=2.5V)

	Standard Value					
Parameter	Symbol	MIN	TYP	MAX	Unit	Condition
[Internal Regulator	VREGA]					
Output Voltage	VREG A	2.125	2.2	2.275	٧	Io=5mA
【Under Voltage Lock	out]				•	
VCC startup voltage Threshold	Vuv1	-	1.95	2.05	٧	
VCC minimum operating voltage after Turn-On	Vuv2	-	2.05	2.15	>	
VREGA startup voltage Threshold	Vuv3	-	-	2.025	٧	VCC=2.2V
VREGA minimum operating voltage after Turn-On	Vuv4	-	-	2.15	٧	VCC=2.2V
[Short Circuit Pro	tection]				1	
Timer Startup Threshold	Vtcinv	0.42	0.48	0.54	٧	INV pin monitor CH4
Delay time for SCP 1	Tscp	50	70	90	msec	CH1~3,5~7
Delay time for SCP 2	Tscp4	7	10	13	msec	CH4
[Oscillator]						_
Frequency CH1,3,4	fosc1	1.3	1.5	1.7	MHz	RT=62kΩ
Rrequency CH2,5,6,7	fosc2	0.65	0.75	0.85	MHz	RT=62k Ω
Max duty 1,3	Dmax1 d		-	100	%	Vscp=0V (※1)
Max duty 4	Dmax1 u	86	92	96	%	
Max duty 5,6,7	Dmax2	86	92	96	%	
Max duty CH2 Lx21	Dmax3	-	-	100	%	
Max duty CH2 Lx22	Dmax4	86	92	96	%	
[Error AMP]						
Input Bias Current	IINV	-	0	50	nA	INV1,3∼6=3.0V
INV Threshold	VINV	0.79	0.80	0.81	٧	CH1,3~6
INV7 Threshold 1	VINV7	598	630	662	mV	PWM7 Duty=100%
INV7 Threshold 2	VINV7 2	449	473	497	mV	PWM7 Duty=75%
INV7 Threshold 3	VINV7 3	234	252	270	mV	PWM7 Duty=40%
INV7 Threshold 4	VINV7 4	17	32	47	mV	PWM7 Duty=5%
[CH2 Feedback]						
CH2 Output Voltage	VO2	3.332	3.4	3.46 8	٧	
VO2S Input Current	IVO2S	4.7	6.7	8.7	uA	VO2S= 3.4V
[Reference Voltage Vref for CH5]						
CH5 Output Voltage	VOUT 5	-6.09	-6.00	-5.91	٧	INV5 1M//200k Ω , 1M Ω ($\t \times 2$)
Line Regulation	DVLi	_	4.0	12.5	mV	VCC= 2.2∼5V
Output Current When shorted	Ios	0.2	1.0	-	mA	VREF5=0V

Standard Value							
Parame	eter	Symbol	MIN	TYP	MAX	Unit	Condition
[Soft Start]							
CH1,2,4 Soft Start time		Tss1,2,4	1.5	2.5	3.5	msec	RT=62kΩ
CH3 Soft Start time		Tss3	0.5	1.5	2.5	msec	RT=62kΩ
CH5 Soft Start	t time	Tss5	1.8	2.8	3.8	msec	RT=62kΩ
CH6 Soft Start		Tss6	2.5	3.5	4.5	msec	RT=62kΩ
CH7 Soft Start	t time	Тотс	1.3	2.6	5.2	msec	L=6.4 μ H, Co=4.7 μ F LED 3pcs (※3)
CH1~4 Delay Soft Start	time for	Td1	9	15	21	msec	RT=62kΩ
CH 5,6 Delay t Soft Start	ime for	Td56	0.23	0.42	0.61	msec	RT=62kΩ, STB1234=H
【Output Dri							
CH1 Highsion resisitance	de SW ON	RON1P	-	300	450	mΩ	Hx1=3.6V
	SW ON resistance	RON1N	-	230	350	mΩ	Hx1=3.6V
CH2 Lx21 Hig	shside SW ON	RON21P	_	120	180	mΩ	Hx2=3.6V
resist	Lowside SW			+		1	
ON re	sisitance	RON21N	-	120	180	mΩ	Hx2=3.6V,
resist	CH2 Lx22 Highside SW ON resistance		-	150	230	mΩ	VO2=3.4V
CH2 Lx22 Lowside SW ON resistance		RON22N	-	120	180	${\sf m}\Omega$	Hx2=3.6V
CH3 Highside SW ON resistance		RON3P	-	300	450	mΩ	Hx3=3.6V
CH3 Lowside SW ON resistace		RON3N	-	230	350	mΩ	Hx3=3.6V
CH4 Highside SW ON resistace		RON4P	-	150	230	mΩ	Hx4=5V
CH4 Lowside SW ON resistance		RON4N	-	110	170	mΩ	Hx4=5V
CH5 PMOS S	W ON resistace	RON5P	-	600	900	$m\Omega$	Hx56=3.6V
CH6,7 NMOS S	SW ON resistance	RON6N	-	500	800	mΩ	Hx56=3.6V
CH6 Load SW	ON resistace	RON67P	-	200	300	mΩ	Hx56=3.6V
[STB1~6]							
STB Control	Active	VSTBH1	1.5	-	5.5	V	
Voltage	Non Active	VSTBL1	-0.3	-	0.3	٧	
Pull Down Res	sistance	RSTB1	250	400	700	kΩ	STB1234, STB56
[PWM7]							
PWM7 Control	H Level	VPWMH	2.05	-	4.00	V	
Voltage	L Level	VPWML	0	-	0.40	٧	
Pull Down Res	sistance	RPWM	250	400	700	kΩ	
CH7 Delay time for shutdown		Toff7	200	300	-	μ sec	RT=62kΩ
[LEDSW]							
LED PIN SW ON resistance		RLED	-	2	3	Ω	VCC=3.6V
[OVP]							
OVP Threshold		VOVP7	18	19	20	٧	VO7 monitor
[Circuit Current]							
Stand-by Current	VCC terminal	ISTB1	-	-	5	μΑ	
	Hx terminal	ISTB2	-	-	5	μΑ	
	Lx terminal	ISTB3		-	5	μΑ	
Circuit Current (VCC PIN Current)		Icc	-	5.0	11.0	mA	INV1-7=1.2V INV5=-0.2V VCC= 3.0V

- $(\cancel{\times}1)$ $\;$ When circuit is operated by 100% duty at CH1 and CH3, SCP timer start.
 - So it is possible to use only for transition time shorter than Tscp.
- ($\mbox{\%2}$) Recommend resistor value over 20k $\mbox{\Omega}$ between VREF to INV5, because VREF current is under 100uA. And, Please set resistor value considered phase compensation for coil and output capacitor.
- $(\slash\hspace{-0.4em}\cancel{\times}3)$ Related to LED quantity , LED forward voltage and Input voltage.
- ① This product is not designed for normal operation with in a radioactive environment..

OPIN Assignment •Block Diagram

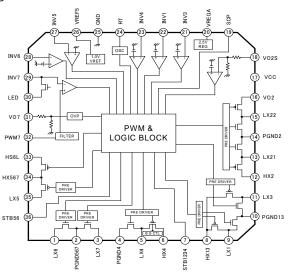
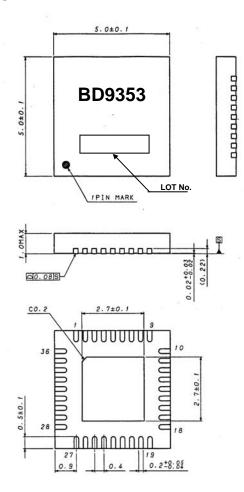



Fig .1

OPackage

OPIN Description

端子名	機能				
VCC	IC Power Supply Input				
GND	Ground				
	al out a				
PGND13,2,4,567	Ground for Internal FET				
VREGA	VREGA Output				
VREF5	CH5 Reference Output				
Hx13,2,567	CH1∼3,5,6 Pch FET Source Terminal ,				
	FET Driver Power Supply				
Hx4	CH4 DC/DC Output				
Lx1,3,4,5,6,7	Terminal for Connecting Inductor				
Lx21	Terminal for Connecting Inductor For CH2 Input				
Lx22	Terminal for Connecting Inductor For CH2 Output				
VO2	CH2 DC/DC Output				
HS6L	Output Terminal for Internal Load Switch				
INV1,3,4,5,6,7	Error Amp Inverted Input				
VO2S	CH2 Output Feedback Terminal				
RT	Terminal for Connecting a Resister To Set the OSC Frequency				
SCP	SCP Timer Flag Terminal				
STB1234,56	CH1∼CH6 ON/OFF Control Terminal				
PWM7	CH7 ON/OFF Control, PWM Dimming Input				
LED	Terminal for connecting LED Cathode				
V07	CH7 DC/DC Output				

図−2

OOperation Notes

1.) Absolute maximum ratings

This produced with strict quality control. However, the IC may be destroyed if operated beyond its absolute maximum ratings. If the device is destroyed by exceeding the recommended maximum ratings, the failure mode will be difficult to determine. (E.g. short mode, open mode) Therefore, physical protection counter-measures (like fuse) should be implemented when operating conditions beyond the absolute maximum ratings anticipated.

2.) GND potential

Make sure GND is connected at lowest potential. All pins except NON5, must not have voltage below GND. Also, NON5 pin must not have voltage below - 0.3V on start up.

3.) Setting of heat

Make sure that power dissipation does not exceed maximum ratings.

4.) Pin short and mistake fitting

Avoid placing the IC near hot part of the PCB. This may cause damage to IC. Also make sure that the output-to-output and output to GND condition will not happen because this may damage the IC.

5.) Actions in strong magnetic field

Exposing the IC within a strong magnetic field area may cause malfunction.

6.) Mutual impedance

Use short and wide wiring tracks for the main supply and ground to keep the mutual impedance as small as possible. Use inductor and capacitor network to keep the ripple voltage minimum.

7.) Thermal shutdown circuit (TSD circuit)

The IC incorporates a built-in thermal shutdown circuit (TSD circuit). The thermal shutdown circuit (TSD circuit) is designed only to shut the IC off to prevent runaway thermal operation. It is not designed to protect the IC or guarantee its operation. Do not continue to use the IC after operating this circuit or use the IC in an environment where the operation of this circuit is assumed.

8.) Rush current at the time of power supply injection.

An IC which has plural power supplies, or CMOS IC could have momentary rush current at the time of power supply injection. Please take care about power supply coupling capacity and width of power Supply and GND pattern wiring.

9.) IC Terminal Input

This IC is a monolithic IC that has a P- board and P+ isolation for the purpose of keeping distance between elements. A P-N junction is formed between the P-layer and the N-layer of each element, and various types of parasitic elements are then formed. For example, an application where a resistor and a transistor are connected to a terminal (shown in Fig.15):

OWhen GND > (terminal A) at the resistor and GND > (terminal B) at the transistor (NPN), the P-N junction operates as a parasitic diode.

OWhen GND > (terminal B) at the transistor (NPN), a parasitic NPN transistor operates as a result of the NHayers of other elements in the proximity of the aforementioned parasitic diode.

Parasitic elements are structurally inevitable in the IC due to electric potential relationships. The operation of parasitic elements Induces the interference of circuit operations, causing malfunctions and possibly the destruction of the IC. Please be careful not to use the IC in a way that would cause parasitic elements to operate. For example, by applying a voltage that is lower than the GND (P-board) to the input terminal.

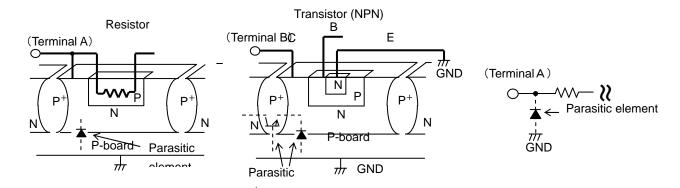


Fig - 3 Simplified structure of a Bipolar IC

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.

The content specified herein is subject to change for improvement without notice.

The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.

While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/