Precision Reference ## **FEATURES** - Ultra-Low Drift: 5ppm/°C Max - Trimmed to High Accuracy: 0.05% Max - Industrial Temperature Range SO Package - Operates in Series or Shunt Mode - Pin Compatible with AD586, AD587 - Output Sinks and Sources in Series Mode - Very Low Noise < 1ppm _{P-P} (0.1Hz to 10Hz) - 100% Noise Tested - > 100dB Ripple Rejection - Minimum Input/Output Differential of 1V ## **APPLICATIONS** - A/D and D/A Converters - Precision Regulators - Precision Scales - Inertial Navigation Systems - Digital Voltmeters ## DESCRIPTION The LT®1236 is a precision reference that combines ultralow drift and noise with excellent long-term stability and high output accuracy. The reference output will both source and sink up to 10mA and is almost totally immune to input voltage variations. Two voltages are available: 5V and 10V. The 10V version can be used as a shunt regulator (two-terminal zener) with the same precision characteristics as the three-terminal connection. Special care has been taken to minimize thermal regulation effects and temperature induced hysteresis. The LT1236 combines both superior accuracy and temperature coefficient specifications without the use of high power, on-chip heaters. The LT1236 references are based on a buried zener diode structure which eliminates noise and stability problems with surface breakdown devices. Further, a subsurface zener exhibits better temperature drift and time stability than even the best band-gap references. T, LTC and LT are registered trademarks of Linear Technology Corporation. ## TYPICAL APPLICATION ### **Basic Positive and Negative Connections** ### Typical Distribution of Temperature Drift ## **ABSOLUTE MAXIMUM RATINGS** | Input VoltageInput/Output Voltage Differential | | |--|-----------| | Output-to-Ground Voltage (Shunt Mode Current Lin | | | LT1236-5 | 10V | | LT1236-10 | 16V | | Trim Pin-to-Ground Voltage | | | Positive Equal to | V_{OUT} | | Negative | · 20V | | Output Short-Circuit Duration V _{IN} = 35V | 10 sec | |---|------------------| | V _{IN} ≤ 20V | | | Operating Temperature Range | | | LT1236AC, BC, CC | 0°C to 70°C | | LT1236AI, BI, CI | 40°C to 85°C | | Storage Temperature Range | . −65°C to 150°C | | Lead Temperature (Soldering, 10 sec) | 300°C | ## PACKAGE/ORDER INFORMATION Consult factory for Military grade parts. ## **ELECTRICAL CHARACTERISTICS** $V_{IN} = 10V$, $I_{OUT} = 0$, $T_A = 25$ °C, unless otherwise noted. | | | LT1236-5 | | | | | |---|--|----------|------------------|----------------|---------------------|----------------------------------| | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS | | Output Voltage (Note 1) | LT1236A-5
LT1236B-5/LT1236C-5 | | 4.9975
4.9950 | 5.000
5.000 | 5.0025
5.0050 | V
V | | Output Voltage Temperature Coefficient (Note 2) | $T_{MIN} \le T_J \le T_{MAX}$
LT1236A-5
LT1236B-5
LT1236C-5 | | | 2
5
10 | 5
10
15 | ppm/°C
ppm/°C
ppm/°C | | Line Regulation (Note 3) | $7.2V \le V_{IN} \le 10V$ $10V \le V_{IN} \le 40V$ | • | | 4
2 | 12
20
6
10 | ppm/V
ppm/V
ppm/V
ppm/V | | Load Regulation (Sourcing Current) (Note 3) | 0 ≤ l _{OUT} ≤ 10mA | • | | 10 | 20
35 | ppm/mA
ppm/mA | ## **ELECTRICAL CHARACTERISTICS** $V_{IN} = 10V$, $I_{OUT} = 0$, $T_A = 25$ °C, unless otherwise noted. | PARAMETER | CONDITIONS | | MIN | LT1236-5
TYP | MAX | UNITS | |--|-------------------------------------|---|-----|-----------------|------------|--| | Load Regulation (Sinking Current) (Note 3) | 0 ≤ I _{OUT} ≤ 10mA | • | | 60 | 100
150 | ppm/mA
ppm/mA | | Supply Current | | • | | 0.8 | 1.2
1.5 | mA
mA | | Output Voltage Noise
(Note 5) | 0.1Hz ≤ f ≤ 10Hz
10Hz ≤ f ≤ 1kHz | | | 3.0
2.2 | 3.5 | μV _{P-P}
μV _{RMS} | | Long-Term Stability of Output Voltage (Note 6) | Δt = 1000Hrs Non-Cumulative | | | 20 | | ppm | | Temperature Hysteresis of Output (Note 7) | $\Delta T = \pm 25$ °C | | | 10 | | ppm | ### $V_{IN} = 15V$, $I_{OUT} = 0$, $T_A = 25$ °C, unless otherwise noted. | | | | | LT1236-10 | 1 | | |---|--|---|----------------|------------------|------------------|--| | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS | | Output Voltage (Note 1) | LT1236A-10
LT1236B-10/LT1236C-10 | | 9.995
9.990 | 10.000
10.000 | 10.005
10.010 | V | | Output Voltage Temperature Coefficient (Note 2) | $T_{MIN} \le T_{J} \le T_{MAX}$ $LT1236A-10$ $LT1236B-10$ $LT1236C-10$ | | | 2
5
10 | 5
10
15 | ppm/°C
ppm/°C
ppm/°C | | Line Regulation (Note 3) | $11.5V \le V_{IN} \le 14.5V$
$14.5V \le V_{IN} \le 40V$ | • | | 1.0
0.5 | 4
6
2
4 | ppm/V
ppm/V
ppm/V
ppm/V | | Load Regulation (Sourcing Current) (Note 3) | 0 ≤ I _{OUT} ≤ 10mA | • | | 12 | 25
40 | ppm/mA
ppm/mA | | Load Regulation (Shunt Mode)
(Notes 3, 4) | 1.7mA ≤ I _{SHUNT} ≤ 10mA | • | | 50 | 100
150 | ppm/mA
ppm/mA | | Series Mode Supply Current | | • | | 1.2 | 1.7
2.0 | mA
mA | | Shunt Mode Minimum Current | V _{IN} is Open | • | | 1.1 | 1.5
1.7 | mA
mA | | Output Voltage Noise (Note 5) | 0.1Hz ≤ f ≤ 10Hz
10Hz ≤ f ≤ 1kHz | | | 6.0
3.5 | 6 | μV _{P-P}
μV _{RMS} | | Long-Term Stablility of Output Voltage (Note 6) | Δt = 1000Hrs Non-Cumulative | | | 30 | | ppm | | Temperature Hysteresis of Output (Note 7) | $\Delta T = \pm 25^{\circ}C$ | | | 5 | | ppm | The ● denotes specifications which apply over the specified temperature range. **Note 1:** Output voltage is measured immediately after turn-on. Changes due to chip warm-up are typically less than 0.005%. **Note 2:** Temperature coefficient is measured by dividing the change in output voltage over the temperature range by the change in temperature. **Incremental slope is also measured at 25°C.** **Note 3:** Line and load regulation are measured on a pulse basis. Output changes due to die temperature change must be taken into account separately. **Note 4:** Shunt mode regulation is measured with the input open. With the input connected, shunt mode current can be reduced to 0mA. Load regulation will remain the same. Note 5: RMS noise is measured with a 2-pole highpass filter at 10Hz and a 2-pole lowpass filter at 1kHz. The resulting output is full-wave rectified and then integrated for a fixed period, making the final reading an average as opposed to RMS. Correction factors are used to convert from average to RMS, and 0.88 is used to correct for the non-ideal bandbass of the filters. Peak-to-peak noise is measured with a single highpass filter at 0.1Hz and a 2-pole lowpass filter at 10Hz. The unit is enclosed in a still-air environment to eliminate thermocouple effects on the leads. Test time is 10 seconds. **Note 6:** Long-term stability typically has a logarithmic characteristic and therefore, changes after 1000 hours tend to be much smaller than before that time. Total drift in the second thousand hours is normally less than one third that of the first thousand hours, with a continuing trend toward reduced drift with time. Significant improvement in long-term drift can be ## **ELECTRICAL CHARACTERISTICS** V_{IN} = 15V, I_{OUT} = 0, T_A = 25°C, unless otherwise noted. realized by preconditioning the IC with a 100-200 hour, 125°C burn in. Long term stability will also be affected by differential stresses between the IC and the board material created during board assembly. Temperature cycling and baking of completed boards is often used to reduce these stresses in critical applications. **Note 7:** Hysteresis in output voltage is created by package stress that differs depending on whether the IC was previously at a higher or lower temperature. Output voltage is always measured at 25°C, but the IC is cycled to 50°C or 0°C before successive measurements. Hysteresis is roughly proportional to the square of temperature change. Hysteresis is not normally a problem for operational temperature excursions, but can be significant in critical narrow temperature range applications where the instrument might be stored at high or low temperatures. ## TYPICAL PERFORMANCE CHARACTERISTICS ## TYPICAL PERFORMANCE CHARACTERISTICS Load Transient Response, LT1236-5, C_{LOAD} = 0 Load Transient Response, LT1236-5, C_{LOAD} = 1000pF Output Noise 0.1Hz to 10Hz, LT1236-5 ## TYPICAL PERFORMANCE CHARACTERISTICS Output Noise 0.1Hz to 10Hz, LT1236-10 ## APPLICATIONS INFORMATION ### **Effect of Reference Drift on System Accuracy** A large portion of the temperature drift error budget in many systems is the system reference voltage. This graph indicates the maximum temperature coefficient allowable if the reference is to contribute no more than 0.5LSB error to the overall system performance. The example shown is a 12-bit system designed to operate over a temperature range from 25°C to 65°C. Assuming the system calibration is performed at 25°C, the temperature span is 40°C. It can be seen from the graph that the temperature coefficient of the reference must be no worse than 3ppm/°C if it is to contribute less than 0.5LBS error. For this reason, the LT1236 family has been optimized for low drift. ### **Trimming Output Voltage** The LT1236-10 has a trim pin for adjusting output voltage. The impedance of the trim pin is about $12k\Omega$ with a nominal open circuit voltage of 5V. It is designed to be driven from a source impedance of $3k\Omega$ or less to minimize changes in the LT1236 TC with output trimming. Attenuation between the trim pin and the output is 70:1. This allows ± 70 mV trim range when the trim pin is tied to the wiper of a potentiometer connected between the output and ground. A $10k\Omega$ potentiometer is recommended, preferably a 20 turn cermet type with stable characteristics over time and temperature. The LT1236-10 "A" version is pre-trimmed to ± 5 mV and therefore can utilize a restricted trim range. A 75k resistor in series with a $20k\Omega$ potentiometer will give $\pm 10mV$ trim range. Effect on the output TC will be only 1ppm/°C for the $\pm 5mV$ trim needed to set the "A" device to 10.000V. ### LT1236-5 The LT1236-5 does have an output voltage trim pin, but the TC of the nominal 4V open circuit voltage at pin 5 is about -1.7mV/°C. For the voltage trimming not to affect reference output TC, the external trim voltage must track the voltage on the trim pin. Input impedance of the trim pin is about 100k Ω and attenuation to the output is 13:1. The technique shown below is suggested for trimming the output of the LT1236-5 while maintaining minimum shift in output temperature coefficient. The R1/R2 ratio is chosen to minimize interaction of trimming and TC shifts, so the exact values shown should be used. ### **Capacitive Loading and Transient Response** The LT1236 is stable with all capacitive loads, but for optimum settling with load transients, output capacitance should be under 1000pF. The output stage of the reference is class AB with a fairly low idling current. This makes transient response worse-case at light load currents. Because of internal current drain on the output, actual worst-case occurs at $I_{LOAD}=0$ on LT1236-5 and $I_{LOAD}=1.4 \mathrm{mA}$ (sinking) on LT1236-10. Significantly better load transient response is obtained by moving slightly away from these points. See Load Transient Response curves for details. In general, best transient response is obtained when the output is sourcing current. In critical applications, a $10 \mu F$ solid tantalum capacitor with several ohms in series provides optimum output bypass. ## APPLICATIONS INFORMATION ### **Kelvin Connections** Although the LT1236 does not have true force/sense capability at its outputs, significant improvements in ground loop and line loss problems can be achieved with proper hook-up. In series mode operation, the ground pin of the LT1236 carries only \approx 1mA and can be used as a sense line, greatly reducing ground loop and loss problems on the low side of the reference. The high side supplies load current so line resistance must be kept low. Twelve feet of #22 gauge hook-up wire or 1 foot of 0.025 inch printed circuit trace will create 2mV loss at 10mA output current. This is equivalent to 1LSB in a 10V. 12-bit system. The following circuits show proper hook-up to minimize errors due to ground loops and line losses. Losses in the output lead can be greatly reduced by adding a PNP boost transistor if load currents are 5mA or higher. R2 can be added to further reduce current in the output sense lead. ### **Effects of Air Movement on Low Frequency Noise** The LT1236 has very low noise because of the buried zener used in its design. In the 0.1Hz to 10Hz band, peak-to-peak noise is about 0.5ppm of the DC output. To achieve this low noise, however, care must be taken to shield the reference from ambient air turbulence. Air movement can create noise because of thermoelectric differences between IC package leads and printed circuit board materials and/or sockets. Power dissipation in the reference, even though it rarely exceeds 20mW, is enough to cause small temperature gradients in the package leads. Variations in thermal resistance, caused by uneven air flow, create differential lead temperatures, thereby causing thermoelectric voltage noise at the output of the reference. ### Standard Series Mode #### Series Mode with Boost Transistor *OPTIONAL—REDUCES CURRENT IN OUTPUT SENSE LEAD: R2 = 2.4k (LT1236-5), 5.6k (LT1236-10) LT1235 AlO4 ## TYPICAL APPLICATIONS # Restricted Trim Range for Improved Resolution, 10V, "A" Version Only ### LT1236-10 Full Trim Range (±0.7%) ### **Negative Series Reference** ## TYPICAL APPLICATIONS ### **Boosted Output Current** with No Current Limit ### **Boosted Output Current** with Current Limit ### ±10V Output Reference ### Handling Higher Load Currents *SELECT R1 TO DELIVER TYPICAL LOAD CURRENT. LT1236 WILL THEN SOURCE OR SINK AS NECESSARY TO MAINTAIN PROPER OUTPUT. DO NOT REMOVE LOAD AS OUTPUT WILL BE DRIVEN UNREGULATED HIGH. LINE REGULATION IS DEGRADED IN THIS APPLICATION ## Operating 5V Reference from 5V Supply - *FOR HIGHER FREQUENCIES C1 AND C2 MAY BE DECREASED - **PARALLEL GATES FOR HIGHER REFERENCE CURRENT LOADING 1 T1 235 TA15 LT1235 TA07 ### Trimming 10V Units to 10.24V ## TYPICAL APPLICATIONS ### Strain Gauge Conditioner for 350 Ω Bridge ### R1 357Ω 1/2W 28mA LT1236-10 28.5mA 15V OUT 350Ω STRAIN GND GAUGE BRIDGE** 2M 20k R4 V_{OUT} LM301A[†] LT1012C 20k 2M -5V 357Ω 1/2W -15V ### Negative Shunt Reference Driven by Current Source *THIS RESISTOR PROVIDES POSITIVE FEEDBACK TO THE BRIDGE TO ELIMINATE LOADING EFFECT OF THE AMPLIFIER. EFFECTIVE $Z_{\rm IN}$ OF AMPLIFIER STAGE IS \geq 1M Ω . IF R2 TO R5 ARE CHANGED, SET R6 = R3 **BRIDGE IS ULTRA-LINEAR WHEN ALL LEGS ARE ACTIVE, TWO IN COMPRESSION AND TWO IN TENSION, OR WHEN ONE SIDE IS ACTIVE WITH ONE COMPRESSED AND ONE TENSIONED LEG **OFFSET AND DRIFT OF LM301A ARE VIRTUALLY ELIMINATED BY DIFFERENTIAL CONNECTION OF LT1012C LT1235 TA08 ### Precision DAC Reference with System TC Trim ### 2-Pole Lowpass Filtered Reference ## TYPICAL APPLICATIONS ### Ultra-Linear Platinum Temperature Sensor* ## **EQUIVALENT SCHEMATIC** ## PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted. ### N8 Package 8-Lead Plastic DIP ^{*}THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm). ### S8 Package 8-Lead Plastic SOIC ## **RELATED PARTS** | PART NUMBER | DESCRIPTION | COMMENTS | |-------------|-----------------------------|----------------| | LT1019 | Precision Bandgap Reference | 0.05%, 5ppm/°C | | LT1027 | Precision 5V Reference | 0.02%, 2ppm/°C |