MEMORY CMOS 2 × 2 M × 4 BITS SYNCHRONOUS DYNAMIC RAM MB81116422A-125/-100/-84/-67 # CMOS 2 Banks of 2,097,152-WORDS × 4 BITS Synchronous Dynamic Random Access Memory #### **■ DESCRIPTION** The Fujitsu MB81116422A is a CMOS Synchronous Dynamic Random Access Memory (SDRAM) containing 16,777,216 memory cells accessible in an 4-bit format. The MB81116422A features a fully synchronous operation referenced to a positive edge clock whereby all operations are synchronized at a clock input which enables high performance and simple user interface coexistence. The MB81116422A SDRAM is designed to reduce the complexity of using a standard dynamic RAM (DRAM) which requires many control signal timing constraints, and may improve data bandwidth of memory as much as 5 times more than a standard DRAM. The MB81116422A is ideally suited for laser printers, high resolution graphic adapters, accelerators and other applications where an extremely large memory and bandwidth are required and where a simple interface is needed. #### **■ PRODUCT LINE & FEATURES** | Parameter | | MB811 | 16422 A | | | |--------------------------------------|--------------|--------------|----------------|-------------|--| | raiailletei | -125 | -100 | -84 | -67 | | | Clock Frequency | 125 MHz max. | 100 MHz max. | 84 MHz max. | 67 MHz max. | | | Burst Mode Cycle Time | 8 ns min. | 10 ns min. | 12 ns min. | 15 ns min. | | | RAS Access Time | 45 ns max. | 54 ns max. | 56 ns max. | 60 ns max. | | | CAS Access Time | 21 ns max. | 24 ns max. | 26 ns max. | 30 ns max. | | | Access Time From Clock (CL = 3) | 7.5 ns max. | 8.5 ns max. | 8.5 ns max. | 9 ns max. | | | Operating Current (Two Banks Active) | 140 mA max. | 130 mA max. | 120 mA max. | 110 mA max. | | | Power Down Mode Current | 2 mA max. | | | | | - Single +3.3 V Supply ± 0.3 V tolerance - LVTTL compatible I/O - 4 K refresh cycles every 65.6 ms - Dual bank operation - Byte control by DQM - Burst read/write operation and burst read/single write operation capability - Programmable burst type, burst length, and CAS latency - Auto-and Self-refresh (every 16 μs) - CKE power down mode - Output Enable and Input Data Mask This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit. #### ■ ABSOLUTE MAXIMUM RATINGS (See WARNING) | Parameter | Symbol | Value | Unit | |---------------------------------------|-----------|--------------|------| | Voltage of Vcc Supply Relative to Vss | Vcc, Vccq | -0.5 to +4.6 | V | | Voltage at Any Pin Relative to Vss | VIN, VOUT | -0.5 to +4.6 | V | | Short Circuit Output Current | Іоит | ±50 | mA | | Power Dissipation | Po | 1.3 | W | | Storage Temperature | Тѕтс | −55 to +125 | °C | **WARNING:** Permanent device damage may occur if the above **Absolute Maximum Ratings** are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. #### **■ PACKAGE** ## **Package and Ordering Information** - 44-pin plastic (400 mil) TSOP-II, order as MB81116422A-xxxFN #### ■ PIN ASSIGNMENTS AND DESCRIPTIONS #### 44-Pin TSOP (TOP VIEW) <Normal Bend: FPT-44P-M18> (Marking side) | Pin Number | Symbol | Description | |--|----------------------|--| | 1, 5, 9, 22, 36, 40 | Vcc, Vccq | Supply Voltage | | 4, 8, 37, 41 | DQo to DQ3 | Data I/O | | 3, 7, 23, 38, 42, 44 | Vss, Vssq * | Ground | | 2, 6, 10, 11, 30, 34, 35, 39, 43 | N.C. | No Connection | | 12 | WE | Write Enable | | 13 | CAS | Column Address Strobe | | 14 | RAS | Row Address Strobe | | 15 | CS | Chip Select | | 16 | A ₁₁ (BA) | Bank Select | | 17 | AP | Auto Precharge Enable | | 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29 | Ao to A10 | Address Input • Row: Ao to A10 • Column: Ao to A9 | | 31 | CKE | Clock Enable | | 32 | CLK | Clock Input | | 33 | DQM | Input Mask/Output Enable | ^{*:} These pins are connected internally in the chip. #### **■ FUNCTION TRUTH TABLE** #### **COMMAND TRUTH TABLE** | Function | Notes | Symbol | CI | KE | CS | RAS | CAS | WE | A 11 | A 10 | A ₉ to A ₈ | A7 to A0 | |-------------------------------|--------|--------|-----|-----------|---------------|------|----------|------------|-------------|-------------|----------------------------------|----------| | Tunction | n-1 n | | CAS | 44 L | (BA) | (AP) | A9 to A8 | 71. (0 710 | | | | | | Device Deselect | *5 | DESL | Н | Х | Н | Х | Х | Х | Х | Х | Х | Х | | No Operation | *5 | NOP | Н | Х | L | Н | Н | Н | Х | Х | Х | Х | | Burst Stop | *6 | BST | Н | Х | L | Н | Н | L | Х | Х | Х | Х | | Read | *7 | READ | Н | Х | L | Н | L | Н | ٧ | L | Х | ٧ | | Read with Auto-
precharge | *7 | READA | Н | Х | L | Н | L | Н | ٧ | Н | Х | ٧ | | Write | *7 | WRIT | Н | Х | L | Н | L | L | ٧ | L | Х | ٧ | | Write with Auto-
precharge | *7 | WRITA | Н | Х | L | Н | L | L | ٧ | Н | Х | ٧ | | Bank Active (RAS) | *8 | ACTV | Н | Х | L | L | Н | Н | ٧ | ٧ | ٧ | ٧ | | Precharge Single
Bank | | PRE | Н | Х | L | L | Н | L | ٧ | L | Х | Х | | Precharge All
Banks | | PALL | Н | Х | L | L | Н | L | Х | Н | Х | Х | | Mode Register Set | *9, 10 | MRS | Н | Χ | L | L | L | L | ٧ | L | ٧ | ٧ | **Notes:** *1. V = Valid, L = Logic Low, H = Logic High, X = either L or H. - *2. All commands assumes no CSUS command on previous rising edge of clock. - *3. All commands are assumed to be valid state transitions. - *4. All inputs are latched on the rising edge of clock. - *5. NOP and DESL commands have the same effect on the part. - *6. BST command is effective only during full colmun burst read or write. - *7. READ, READA, WRIT and WRITA commands should only be issued after the corresponding bank has been activated (ACTV command). Refer to STATE DIAGRAM. - *8. ACTV command should only be issued after corresponding bank has been precharged (PRE or PALL command). - *9. Required after power up. - *10. MRS command should only be issued after all banks have been precharged (PRE or PALL command). Refer to STATE DIAGRAM. #### **DQM TRUTH TABLE** | Function | Command | CH | DQM | | |----------------------------|---------|-----|-----|------| | T unction | Command | n-1 | n | DOWN | | Data Write / Output Enable | ENBL | Н | X | L | | Data Mask / Output Disable | MASK | Н | X | Н | #### **CKETRUTHTABLE** | Current | Function | Notes | Symbol | Cł | ΚE | cs | RAS | CAS | WE | A 11 | A 10 | A _{9 to} A _D | |------------------|-----------------------------|-------|--------|-----|----|----|-----|-----|----|-------------|-------------|----------------------------------| | State | 1 direction | MOTER | Symbol | n-1 | n | CS | nas | CAS | WE | (BA) | (AP) | A9 to AD | | Bank Active | Clock Suspend
Mode Entry | *1 | CSUS | Н | L | Х | Х | Х | Х | Х | Х | Х | | Any | Clock Suspend
Continue | *1 | | L | L | Х | Х | Х | Х | Х | Х | Х | | Clock
Suspend | Clock Suspend
Mode Exit | | | L | Н | Х | Х | Х | Х | Х | Х | Х | | Idle | Auto-refresh
Command | *2 | REF | Н | Н | L | L | L | Н | Х | Х | Х | | Idle | Self-refresh
Entry | *2 | SELF | Н | L | L | L | L | Н | X | Х | X | | Self Refresh | Self-refresh Exit | | SELFX | L | Н | L | Н | Н | Н | X | Х | X | | Gell Hellesii | Sell-lellesii Exit | | SELFA | | Н | Н | Х | Х | Х | X | Х | X | | Idle | Power Down | | PD | Н | L | L | Н | Н | Н | X | Х | X | | lale | Entry | | | Н | L | Н | Х | Х | Х | Х | Х | X | | Precharge | Power Down | | PD | Н | L | L | Н | Н | Н | Х | Х | Х | | i recharge | Entr y | | 10 | Н | L | Н | Х | Х | Х | Х | Х | Х | | Back Active | Power Down | *3 | PD | Н | L | L | L | Н | L | ٧ | L | Х | | Dack Active | Entry | 3 | ן דט | Н | L | L | L | Н | L | Х | Н | Х | | Power Down | Power Down Exit | | | L | Н | L | Н | Н | Н | Χ | Х | Х | | I OWEI DOWII | I OWEI DOWII EXIL | | | L | Н | Н | Х | Х | Х | Χ | Х | Х | Notes: *1. The CSUS command requires that at least one bank is active. Refer to STATE DIAGRAM. ^{*2.} REF and SELF commands should only be issued after all banks have been precharged (PRE or PALL command). Refer to STATE DIAGRAM. ^{*3.} PD command should be issud after all banks have been precharged (PRE or PALL command). If a bank or all banks are in active state, PD command can be issued in conjuction with PRE or PALL command whichever Precharge command makes all banks in idle state. ## **OPERATION COMMAND TABLE (Aplicable to single bank)** | Current
State | cs | RAS | CAS | WE | Address
Input | Command | Function N | otes | |------------------|----|-----|-----|----|------------------|------------|--|------| | Idle | Н | Х | Х | Х | Х | DESL | NOP | | | | L | Н | Н | Н | Х | NOP | NOP | | | | L | Н | Н | L | Х | BST | NOP | | | | L | Н | L | Н | BA, CA, AP | READ/READA | Illegal | | | | L | Н | L | L | BA, CA, AP | WRIT/WRITA | Illegal | | | | L | L | Н | Н | BA, RA | ACTV | Bank Active after teco | | | | L | L | Н | L | BA, AP | PRE/PALL | NOP | | | | L | L | L | Н | Х | REF/SELF | Auto-refresh or Self-refresh | *3 | | | L | L | L | L | MODE | MRS | Mode Register Set (Idle after tasc) | *3 | | Bank Active | Н | Χ | Х | Х | Х | DESL | NOP | | | | L | Н | Н | Н | Х | NOP | NOP | | | | L | Н | L | Н | BA, CA, AP | READ/READA | Begin Read; Determine AP | | | | L | Н | Н | L | Х | BST | NOP | | | | L | Н | L | L | BA, CA, AP | WRIT/WRITA | Begin Write; Determine AP | | | | L | L | Н | Н | BA, RA | ACTV | Illegal | *2 | | | L | L | Н | L | BA, AP | PRE/PALL | Precharge; Determine
Precharge Type | | | | L | L | L | Н | Х | REF/SELF | Illegal | | | | L | L | L | L | MODE | MRS | Illegal | | | Current
State | cs | RAS | CAS | WE | Address
Input | Command | Function | Notes | |------------------|----|-----|-----|----|------------------|------------|--|-------| | Read | Н | Х | Х | х | х | DESL | NOP (Continue Burst to End → Bank Active) | | | | L | Н | Н | Н | x | NOP | NOP (Continue Burst to End → Bank Active) | | | | L | Н | Н | L | х | BST | Burst Stop → Bank Active (BL = Full Column) NOP (BL = 1, 2, 4, 8) | | | | L | Н | L | Н | BA, CA, AP | READ/READA | Terminate Burst, New Read;
Determine AP | | | | L | Н | L | L | BA, CA, AP | WRIT/WRITA | Terminate Burst, Start Write;
Determine AP | *4 | | | L | L | Н | Н | BA, RA | ACTV | Illegal | *2 | | | L | L | Н | L | BA, AP | PRE/PALL | Terminate Burst, Precharge;
Determine Precharge Type | | | | L | L | L | Н | Х | REF/SELF | Illegal | | | | L | L | L | L | MODE | MRS | lllegal | | | Write | Н | Х | Х | х | Х | DESL | NOP (Continue Burst to End → Write Recovering) | | | | L | Н | Н | Н | Х | NOP | NOP (Continue Burst to End → Write Recovering) | | | | L | Н | Н | L | Х | BST | Burst Stop → Write Recovering → Bank Active (BL = Full Column) NOP (BL = 1, 2, 4, 8) | | | | L | Н | L | Н | BA, CA, AP | READ/READA | Terminate Burst, Start Read;
Determine AP | | | | L | Н | L | L | BA, CA, AP | WRIT/WRITA | Terminate Burst, New Write;
Determine AP | *4 | | | L | L | Н | Н | BA, RA | ACTV | Illegal | *2 | | | L | L | Н | L | BA, AP | PRE/PALL | Terminate Burst, Precharge;
Determine Precharge Type | *4 | | | L | L | L | Н | Х | REF/SELF | llegal | | | | L | L | L | L | MODE | MRS | llegal | | | Current
State | cs | RAS | CAS | WE | Address
Input | Command | Function | Notes | |----------------------------------|----|-----|-----|----|------------------|------------|---|-------| | Read with | Н | Х | Х | х | х | DESL | NOP (Continue Burst to End → Precharge) | | | precharge | L | Н | Н | Н | х | NOP | NOP (Continue Burst to End → Precharge) | | | | L | Н | Н | L | Х | BST | Illegal | | | | L | Н | L | Н | BA, CA, AP | READ/READA | Illegal | *2 | | | L | Н | L | L | BA, CA, AP | WRIT/WRITA | Illegal | *2 | | | L | L | Н | Н | BA, RA | ACTV | Other Bank Active, Illegal on Same
Bank | *2 | | | L | L | Н | L | BA, AP | PRE/PALL | Illegal | *2 | | | L | L | L | Н | Х | REF/SELF | Illegal | | | | L | L | L | L | MODE | MRS | Illegal | | | Write with
Auto-
precharge | Н | Х | Х | х | Х | DESL | NOP (Continue Burst to End → Write Recovering with Precharge) | | | precharge | L | Н | Н | Н | Х | NOP | NOP (Continue Burst to End → Write Recovering with Precharge) | | | | L | Н | Н | L | X | BST | Illegal | | | | L | Н | L | Н | BA, CA, AP | READ/READA | Other Bank Read, Illegal on Same
Bank | *2 | | | L | Н | L | L | BA, CA, AP | WRIT/WRITA | Other Bank Write, Illegal on Same
Bank | *2 | | | L | L | Н | Н | BA, RA | ACTV | Illegal | *2 | | | L | L | Н | L | BA, AP | PRE/PALL | Illegal | *2 | | | L | L | L | Н | Х | REF/SELF | Illegal | | | | L | L | L | L | MODE | MRS | Illegal | | | Current
State | CS | RAS | CAS | WE | Address
Input | Command | Function | Notes | |------------------|----|-----|-----|----|------------------|------------|----------------------------------|-------| | Precharge | Н | Х | Х | Х | Х | DESL | NOP (Idle after tnp) | | | | L | Н | Н | Н | Х | NOP | NOP (Idle after tnp) | | | | L | Н | Н | L | Х | BST | Illegal | | | | L | Н | L | Н | BA, CA, AP | READ/READA | Illegal | *2 | | | L | Н | L | L | BA, CA, AP | WRIT/WRITA | Illegal | *2 | | | L | L | Н | Н | BA, RA | ACTV | Illegal | *2 | | | L | L | Н | L | BA, AP | PRE/PALL | NOP (PALL May Affect Other Bank) | *5 | | | L | L | L | Н | Х | REF/SELF | Illegal | | | | L | L | L | L | MODE | MRS | Illegal | | | Bank | Н | Х | Х | Х | Х | DESL | NOP (Bank Active after tect) | | | Activating | L | Н | Н | Н | Х | NOP | NOP (Bank Active after tect) | | | | L | Н | Н | L | Х | BST | NOP (Bank Active after teco) | | | | L | Н | L | Н | BA, CA, AP | READ/READA | Illegal | *2 | | | L | Н | L | L | BA, CA, AP | WRIT/WRITA | Illegal | *2 | | | L | L | Н | Н | BA, RA | ACTV | Illegal | *6 | | | L | L | Н | L | BA, AP | PRE/PALL | Illegal | *2 | | | L | L | L | Н | Х | REF/SELF | Illegal | | | | L | L | L | L | MODE | MRS | Illegal | | | Current
State | cs | RAS | CAS | WE | Address
Input | Command | Function | Notes | |---------------------|----|-----|-----|----|------------------|------------|----------------------------------|-------| | Write
Recovering | Н | Х | Х | Х | Х | DESL | NOP (Bank Active after twn/tbwc) | | | necovering | L | Н | Н | Н | Х | NOP | NOP (Bank Active after twn/tbwc) | | | | L | Н | Н | L | Х | BST | NOP (Bank Active after twn/tbwc) | | | | L | Н | L | Н | BA, CA, AP | READ/READA | Start Read; Determine AP | *4 | | | L | Н | L | L | BA, CA, AP | WRIT/WRITA | New Write; Determine AP | | | | L | L | Н | Н | BA, RA | ACTV | Illegal | *2 | | | L | L | Н | L | BA, AP | PRE/PALL | Illegal | *2 | | | L | L | L | Н | Х | REF/SELF | Illegal | | | | L | L | L | L | MODE | MRS | Illegal | | | Write
Recovering | Н | Х | Х | Х | Х | DESL | NOP (Precharge after tnw./tnw.) | | | with
Auto- | L | Н | Н | Н | Х | NOP | NOP (Precharge after trw./trw.) | | | precharge | L | Н | Н | L | Х | BST | Illegal | | | | L | Н | L | Н | BA, CA, AP | READ/READA | Illegal | *2 | | | L | Н | L | L | BA, CA, AP | WRIT/WRITA | Illegal | *2 | | | L | L | Н | Н | BA, RA | ACTV | Illegal | *2 | | | L | L | Н | L | BA, AP | PRE/PALL | Illegal | *2 | | | L | L | L | Н | Х | REF/SELF | Illegal | | | | L | L | L | L | MODE | MRS | Illegal | | ## (Continued) | Current
State | <u>cs</u> | RAS | CAS | WE | Address
Input | Command | Function Notes | |------------------|-----------|-----|-----|----|------------------|------------------------------------|-----------------------| | Refreshing | Н | Х | Х | Х | Х | DESL | NOP (Idle after tac) | | | L | Н | Н | Х | Х | NOP/BST | NOP (Idle after tac) | | | L | Н | L | Х | Х | READ/READA/
WRIT/WRITA | Illegal | | | L | L | Н | Х | Х | ACTV/PRE/
PALL | Illegal | | | L | L | L | Х | Х | REF/SELF/
MRS | Illegal *6 | | Mode
Register | Н | Х | Х | Х | Х | DESL | NOP (Idle after tasc) | | Setting | L | Н | Н | Н | Х | NOP | NOP (Idle after tasc) | | | L | Н | Н | L | Х | BST | Illegal | | | L | Н | L | Х | Х | READ/READA/
WRIT/WRITA | Illegal | | | L | L | Х | х | Х | ACTV/PRE/
PALL/REF/
SELF/MRS | Illegal | ABBREVIATIONS: RA = Row Adress CA = Column Address BA = Bank Address AP = Auto Precharge #### **COMMAND TRUTH TABLE FOR CKE** | Current
State | CKE
n-1 | CKE
n | <u>cs</u> | RAS | CAS | WE | Address
Input | Function Notes | |------------------|------------|----------|-----------|-----|-----|----|------------------|-----------------------------------| | Self-refresh | Н | Х | Χ | Х | Х | Х | Х | Invalid | | | L | Н | Н | Х | Х | Х | Х | Exit Self-refresh, Idle after tec | | | L | Н | L | Н | Н | Н | Х | Exit Self-refresh, Idle after tac | | | L | Н | L | Н | L | Х | Х | Illegal | | | L | Н | L | L | Х | Х | Х | Illegal | | | L | L | Х | Х | Х | Х | Х | NOP (Maintain Self-refresh) | | Self-refresh | Н | Н | Н | Х | Х | Х | Х | Idle after tec | | Recovery | Н | Н | L | Н | Н | Х | Х | Idle after tac | | | Н | Н | L | Н | L | Х | Х | Illegal | | | Н | Н | L | L | Х | Х | Х | Illegal | | | Н | L | Н | Х | Х | Х | Х | Begin Clock Suspend Next Cycle | | | Н | L | L | Н | Н | Х | Х | Begin Clock Suspend Next Cycle | | | Н | L | L | Н | L | Х | Х | Illegal | | | Н | L | L | L | Х | Х | X | Illegal | | | L | Н | Х | Х | Х | Х | Х | Exit Clock Suspend Next Cycle | | | L | L | Х | Х | Х | Х | Х | Maintain Clock Suspend | | Current
State | CKE
n-1 | CKE
n | C S | RAS | CAS | WE | Address
Input | Function Notes | |--------------------|------------|----------|----------------|-----|-----|----|------------------|---| | Power Down | Н | Х | Χ | Х | Х | Х | | Invalid | | | ı | Н | Н | Х | Х | Х | Х | Evit Davier Davies Made | | | L | П | L | Н | Н | Н | Х | - Exit Power Down Mode → Idle | | | L | L | Х | Х | Х | Х | Х | NOP (Maintain Power Down
Mode) | | | L | Н | L | L | Х | Х | Х | Illegal | | | L | Н | L | Н | L | Х | Х | Illegal | | Both Banks
Idle | Н | Н | Н | Х | Х | Х | | Refer to the Operation
Command Table | | | Н | Н | L | Н | Х | Х | | Refer to the Operation
Command Table | | | Н | Н | L | L | Н | Х | | Refer to the Operation
Command Table | | | Н | Н | L | L | L | Н | Х | Auto-refresh | | | Н | Н | L | L | L | L | SPECIAL
MODE | Refer to the Operation
Command Table | | | Н | Н | L | L | L | L | MODE | Refer to the Operation
Command Table | | | Н | L | Н | Х | Х | Х | | Refer to the Operation
Command Table | | | Н | L | L | Н | Х | Х | | Refer to the Operation
Command Table | | | Н | L | L | L | Н | Х | | Refer to the Operation
Command Table | | | Н | L | L | L | L | Н | Х | Self-refresh | | | Н | L | L | L | L | L | SPECIAL
MODE | Refer to the Operation
Command Table | | | Н | L | L | L | L | L | MODE | Refer to the Operation
Command Table | | | L | Х | X | Х | Х | Х | X | Power Down | #### (Continued) | Current
State | CKE
n-1 | CKE
n | <u>cs</u> | RAS | CAS | WE | Address
Input | Function | Notes | |-----------------------------------|------------|----------|-----------|-----|-----|----|------------------|---|-------| | Bank Active
Bank
Activating | Н | Н | Х | Х | Х | Х | Х | Refer to the Operation
Command Table | | | Read/Write | Н | L | Х | Х | Х | Х | Х | Begin Clock Suspend Next Cycle | | | | L | Н | Х | Х | Х | Х | X | Exit Clock Suspend Next Cycle | | | | L | L | Х | Х | Х | Х | Х | Maintain Clock Suspend | | | Clock
Suspend | Н | Х | Х | Х | Х | Х | X | Invalid | | | Suspend | L | Н | Х | Х | Х | Х | Х | Exit Clock Suspend Next Cycle | | | | L | L | Х | Х | Х | Х | Х | Maintain Clock Suspend | | | Any State
Other Than
Listed | Н | Н | Х | Х | Х | Х | Х | Refer to the Operation
Command Table | | | Above | Н | L | X | Х | Х | Х | Х | Begin Clock Suspend Next Cycle | | | | L | Н | Х | Х | Х | Х | X | Exit Clock Suspend Next Cycle | | | | L | L | Х | Х | Х | Х | X | Maintain Clock Suspend | | Notes: *1. All entries assume the CKE was High during the proceeding clock cycle and the current clock cycle. - *3. Illegal if any bank is not idle. - *4. Must satisfy bus contention, bus turn around, and/or write recovery requirements. - *5. NOP to bank precharging or in idle state. May precharge bank spesified by BA (and AP). - *6. tred must be satisfied for other bank. ^{*2.} Illegal to bank in specified state; entry may be legal in the bank specified by BA, depending on the state of that bank. #### **CLOCK LATENCY OR DELAY TIME FOR 2 BANK OPERATION** | Second
command
(opposite
bank)
First
command | MRS | ACTV | READ | READA | WRT | WRITA | PRE | PALL | REF | SELF | |---|------------------|------------------|----------------|----------------|----------------|----------------------|-----|------|--|--| | MRS | Imrd | lmrd | | | | | | | lmrd | lmrd | | ACTV | | *1
tred | *2
1 | *2
1 | *2
1 | *2
1 | 1 | tras | | | | READ | | 1
1 | *2
1 | *2
1 | *2
*3 | *2
*3
1 | 1 | 1 | | | | READA | | *1
1 | *2
1 | *2
1 | *2
*3 | *2
*3
1 | 1 | 1 | *1
BL +
t _{RP} | *1
*4
BL +
trp | | WRIT | | *1
1 | *2
1 | *2
1 | *2
1 | *2
1 | 1 | 1 | | | | WRITA | | *1
1 | *2
1 | *2
1 | *2
1 | *2
1 | 1 | 1 | *1
BL +
1 + t _{BP} | *1
BL +
1 + t _{RP} | | PRE | *1
tae | 1 | *2
1 | *2
1 | *2
1 | *2
1 | 1 | 1 | *1
tre | *1
t RP | | PALL *5 | t RP | *1
1 | | | | | 1 | 1 | *1
*6
t _{RP} | *1
*6
t RP | | REF | tac | tec | | | | | | | terd | tnc | | SELF | tPDE
+
tRC | tPDE
+
tRC | | | | | | | tPDE
+
tRC | tpde
+
trc | Notes: *1. Assume opposite bank is in idle state. - *2. Assume opposite bank is in active state. - *3. Assume no I/O conflict. - *4. If $t_{RP} \leftarrow t_{CK}$, minimum latency is a sum of BL + CL. - *5. Assume PALL command dose not affect any operation on opposite bank. - *6. Assume Output is in High-Z state. Illegal Command #### **■ FUNCTIONAL DESCRIPTION** #### SDRAM BASIC FUNCTION Three major differences between this SDRAM and conventional DRAMs are: synchronized operation, burst mode, and mode register. The **synchronized operation** is the fundamental difference. An SDRAM uses a clock input for the synchronization, where the DRAM is basically asynchronous memory although it has been using two clocks, RAS and CAS. Each operation of DRAM is determined by their timing phase differences while each operation of SDRAM is determined by commands and all operations are referenced to a positive clock edge. Fig. 3 shows the basic timing diagram differences between SDRAMs and DRAMs. The **burst mode** is a very high speed access mode utilizing an internal column address generator. Once a column addresses for the first access is set, following addresses are automatically generated by the internal column address counter. The **mode register** is to justify the SDRAM operation and function into desired system conditions. MODE REGISTER TABLE shows how SDRAM can be configured for system requirement by mode register programming. #### **CLOCK (CLK) and CLOCK ENABLE (CKE)** All input and output signals of SDRAM use register type buffers. A CLK is used as a trigger for the register and internal burst counter increment. All inputs are latched by a positive edge of CLK. All outputs are validated by the CLK. CKE is a high active clock enable signal. When CKE = Low is latched at a clock input during active cycle, the next clock will be internally masked. During idle state, (All banks have been precharged) the Power Down mode (standby) is entered with CKE = Low and this will make extremely low standby current. #### CHIP SELECT (CS) $\overline{\text{CS}}$ enables all commands inputs, $\overline{\text{RAS}}$, $\overline{\text{CAS}}$, and $\overline{\text{WE}}$, and address input. When $\overline{\text{CS}}$ is High, command signals are negated but internal operation such as burst cycle will not be suspended. If such a control isn't needed, $\overline{\text{CS}}$ can be tied to ground level. ### COMMAND INPUT (RAS, CAS and WE) Unlike a conventional DRAM, RAS, CAS, and WE do not directly imply SDRAM operation, such as Row address strobe by RAS. Instead, each combination of RAS, CAS, and WE input in conjunction with CS input at a rising edge of the CLK determines SDRAM operation. Refer to FUNCTION TRUTH TABLE in page 5. #### ADDRESS INPUT (Ao to A10) Address input selects an arbitrary location of a total of 2,097,152 words of each memory cell matrix. A total of twenty address input signals are required to decode such a matrix. SDRAM adopts an address multiplexer in order to reduce the pin count of the address line. At a Bank Active command (ACTV), eleven Row addresses are initially latched and the remainder of eight Column addresses are then latched by a Column address strobe command of either a Read command (READ or READA) or Write command (WRIT or WRITA). #### BANK SELECT (A11) This SDRAM has two banks and each bank is organized as 2 M words by 4-bit. Bank selection by A₁₁ occurs at Bank Active command (ACTV) followed by read (READ or READA), write (WRIT or WRITA), and precharge command (PRE). #### DATA INPUT AND OUTPUT (DQ₀ to DQ₃) Input data is latched and written into the memory at the clock following the write command input. Data output is obtained by the following conditions followed by a read command input: trac: from the bank active command when tred (min) is satisfied. (This parameter is reference only.) tcac: from the read command when tRCD is greater than tRCD (min). tac: from the clock edge after trac and toac. The polarity of the output data is identical to that of the input. Data is valid between access time (determined by the three conditions above) and the next positive clock edge (toH). #### DATA I/O MASK (DQM) DQM is an active high enable input and has an output disable and input mask function. During burst cycle and when DQM = High is latched by a clock, input is masked at the same clock and output will be masked at the second clock later while internal burst counter will increment by one or will go to the next stage depending on burst type. #### **BURST MODE OPERATION AND BURST TYPE** The burst mode provides faster memory access. The burst mode is implemented by keeping the same Row address and by automatic strobing column address. Access time and cycle time of Burst mode is specified as tac and tok, respectively. The internal column address counter operation is determined by a mode register which defines burst type and burst count length of 1, 2 or 4 bits of boundary. In order to terminate or to move from the current burst mode to the next stage while the remaining burst count is more than 1, the following combinations will be required: | Current Stage | Next Stage | I | Method (Assert the following command) | | | | | | | | |---------------|-------------|-------------|--|--|--|--|--|--|--|--| | Burst Read | Burst Read | Read Comn | nand | | | | | | | | | Burst Read | Burst Write | 1st Step | Mask Command (Normally 3 clock cycles) | | | | | | | | | burst nead | Durst write | 2nd Step | Write Command after lowo | | | | | | | | | Burst Write | Burst Write | Write Comm | nand | | | | | | | | | Burst Write | Burst Read | Read Comn | nand | | | | | | | | | Burst Read | Precharge | Precharge (| Precharge Command | | | | | | | | | Burst Write | Precharge | Precharge 0 | Precharge Command | | | | | | | | The burst type can be selected either sequential or interleave mode if burst length is 2 or 4. The sequential mode is an incremental decoding scheme within a boundary address to be determined by count length, it assigns +1 to the previous (or initial) address until reaching the end of boundary address and then wraps round to least significant address (= 0). The interleave mode is a scrambled decoding scheme for A₀ and A₂. If the first access of column address is even (0), the next address will be odd (1), or vice-versa. #### **BURST MODE OPERATION AND BURST TYPE (Continued)** When the full burst operation is executed at single write mode, Auto-precharge command is valid only at write operation. The burst type can be selected either sequential or interleave mode. But only the sequential mode is usable to the full column burst. The sequential mode is an incremental decoding scheme within a boundary address to be determined by burst length, it assigns +1 to the previous (or initial) address until reaching the end of boundary address and then wraps round to least significant address (= 0). | Burst
Length | Stating Column
Address
A ₂ A ₁ A ₀ | Sequential Mode | Interleave | |-----------------|---|-----------------|-----------------| | 2 | X X 0 | 0 – 1 | 0 – 1 | | | X X 1 | 1 – 0 | 1 – 0 | | | X 0 0 | 0-1-2-3 | 0-1-2-3 | | 4 | X 0 1 | 1-2-3-0 | 1-0-3-2 | | 4 | X 1 0 | 2-3-0-1 | 2-3-0-1 | | | X 1 1 | 3-0-1-2 | 3-2-1-0 | | | 0 0 0 | 0-1-2-3-4-5-6-7 | 0-1-2-3-4-5-6-7 | | | 0 0 1 | 1-2-3-4-5-6-7-0 | 1-0-3-2-5-4-7-6 | | | 0 1 0 | 2-3-4-5-6-7-0-1 | 2-3-0-1-6-7-4-5 | | 8 | 0 1 1 | 3-4-5-6-7-0-1-2 | 3-2-1-0-7-6-5-4 | | | 1 0 0 | 4-5-6-7-0-1-2-3 | 4-5-6-7-0-1-2-3 | | | 1 0 1 | 5-6-7-0-1-2-3-4 | 5-4-7-6-1-0-3-2 | | | 1 1 0 | 6-7-0-1-2-3-4-5 | 6-7-4-5-2-3-0-1 | | | 1 1 1 | 7-0-1-2-3-4-5-6 | 7-6-5-4-3-2-1-0 | #### FULL COLUMN BURST AND BURST STOP COMMAND (BST) The full column burst is an option of burst length and available only at sequential mode of burst type. This full column burst mode is repeatedly access to the same column. If burst mode reaches end of column address, then it wraps round to first column address (= 0) and continues to count until interrupted by the news read (READ)/write (WRIT/BWRIT), precharge (PRE), or burst stop (BST) command. The selection of auto-precharge option is illegal during the full column burst operation except write command at BURST READ & SINGLE WRITE mode. The BST command is applicable to terminated the full column burst operation and illegal during the burst operation with length of 1, 2, 4, and 8. If the BST command is asserted during the full column burst mode, its operation is terminated immediately and the internal state moves to Bank Active. When read mode is interrupted by BST command, the output will be in High-Z. For the detail rule, please refer to Timing Diagram-8. When write mode is interrupted by BST command, the data to be applied at the same time with BST command will be ignored. #### **BURST READ & SINGLE WRITE** The burst read and single write mode provides single word write operation regardless of its burst length. In this mode, burst read operation does not be affected by this mode. #### PRECHARGE AND PRECHARGE OPTION (PRE, PALL) SDRAM memory core is the same as conventional DRAMs', requiring precharge and refresh operations. Precharge rewrites the bit line and to reset the internal Row address line and is executed by the Precharge command (PRE). With the Precharge command, SDRAM will automatically be in standby state after precharge time (tep). The precharged bank is selected by combination of AP and A₁₁ when Precharge command is asserted. If AP = High, both banks are precharged regardless of A₁₁ (PALL). If AP = Low, a bank to be selected by A₁₁ is precharged (PRE). The auto-precharge enters precharge mode at the end of burst mode of read or write without Precharge command assertion. This auto-precharge is entered by AP = High when a read or write command is asserted. Refer to FUNCTION TRUTH TABLE. #### **AUTO-REFRESH (REF)** Auto-refresh uses the internal refresh address counter. The SDRAM Auto-refresh command (REF) generates Precharge command internally. All banks of SDRAM should be precharged prior to the Auto-refresh command. The Auto-refresh command should also be asserted every 16 μs or a total 4096 refresh commands within a 65.6 ms period. #### SELF-REFRESH ENTRY (SELF) Self-refresh function provides automatic refresh by an internal timer as well as Auto-refresh and will continue the refresh function until cancelled by SELFX. The Self-refresh is entered by applying an Auto-refresh command in conjunction with CKE = Low (SELF). Once SDRAM enters the self-refresh mode, all inputs except for CKE will be "don't care" (either logic high or low level state) and outputs will be in a High-Z state. During a self-refresh mode, CKE = Low should be maintained. SELF command should only be issued after last read data has been appeared on DQ. #### SELF-REFRESH EXIT (SELFX) To exit self-refresh mode, apply minimum 4 clock cycle before CKE brought high, and then the NOP command (NOP) or the Deselect command (DESL) should be asserted within one tac period. CKE should be held High within one tac period after table. Refer to Timing Diagram for the detail. It is recommended to assert an Auto-refresh command just after the tec period to avoid the violation of refresh period. #### MODE REGISTER SET (MRS) The mode register of SDRAM provides a variety of different operations. The register consists of four operation fields; Burst Length, Burst Type, CAS latency, and Operation Code. Refer to MODE REGISTER TABLE in page 31 The mode register can be programmed by the Mode Register Set command (MRS). Each field is set by the address line. Once a mode register is programmed, the contents of the register will be held until re-programmed by another MRS command (or part loses power). MRS command should only be issued on condition that all DQ is in Hi-Z. The condition of the mode register is undefined after the power-up stage. It is required to set each field after initialization of SDRAM. Refer to POWER-UP INITIALIZATION below. #### **POWER-UP INITIALIZATION** The SDRAM internal condition after power-up will be undefined. It is required to follow the following Power On Sequence to execute read or write operation. - 1. Apply power and start clock. Attempt to maintain either NOP or DESL command at the input. - 2. Maintain stable power, stable clock, and NOP condition for a minimum of 200 μs. - 3. Precharge all banks by Precharge (PRE) or Precharge All command (PALL). - 4. Assert minimum of 8 Auto-refresh command (REF). - 5. Program the mode register by Mode Register Set command (MRS). In addition, it is recommended DQM and CKE to track $V_{\rm CC}$ to insure that output is High-Z state. The Mode Register Set command (MRS) can be set before 8 Auto-refresh command (REF). #### **■ CAPACITANCE** $(T_A = 25^{\circ}C, f = 1 \text{ MHz})$ | Parameter | Symbol | Тур. | Max. | Unit | |---------------------------------------|------------------|------|------|------| | Input Capacitance, Address | C _{IN1} | _ | 4 | pF | | Input Capacitance, Except for Address | C _{IN2} | _ | 4 | pF | | I/O Capacitance | C _{I/O} | _ | 7 | pF | # ■ RECOMMENDED OPERATING CONDITIONS (Referenced to Vss) | Parameter | Notes | Symbol | Min. | Тур. | Max. | Unit | |---------------------|-------|-----------|------|------|----------|------| | Cupply Voltage | | Vcc, Vccq | 3.0 | 3.3 | 3.6 | ٧ | | Supply Voltage | - | Vss, Vssq | 0 | 0 | 0 | ٧ | | Input High Voltage | *1 | Vıн | 2.0 | _ | Vcc +0.5 | ٧ | | Input Low Voltage | *2 | VIL | -0.5 | _ | 0.8 | ٧ | | Ambient Temperature | | TA | 0 | _ | 70 | °C | Notes: *1. Overshoot limit: Vih (max) = TBD. ^{*2.} Undershoot limit: $V_{\perp}(min) = -1.5 \text{ V}$ with a pullsewidth $\leq 5 \text{ ns}$. ## ■ DC CHARACTERISTICS (At recommended operating conditions unless otherwise noted.) Notes 1, 2 | D | | 0 | 0 1:4: | Va | ılue | 11 | |--|-----------------------------------|---------------------|---|------|------|--------------| | Para | meter | Symbol | Conditions | Min. | Max. | Unit | | Output High Voltage | 1 | V _{OH(DC)} | lон = −2 mA | 2.4 | _ | V | | Output Low Voltage | | V _{OL(DC)} | lo _L = +2 mA | | 0.4 | V | | Input Leakage Curre | Input Leakage Current (Any Input) | | $\begin{array}{l} 0 \ V \leq V_{IN} \leq V_{CC}; \\ All \ other \ pins \ not \ under \\ test = 0 \ V \end{array}$ | -10 | 10 | μА | | Output Leakage Cui | rrent | lro | 0 V ≤ V _{IN} ≤ V _{CC} ;
Data out disabled | -10 | 10 | μА | | | MB81116422A-125 | | No Burst: | | 90 | | | | MB81116422A-100 | | tcк = min | | 85 | A | | | MB81116422A-84 | lcc1s | trc = min One bank active | _ | 80 | – m A | | Operating Current
(Average Power | MB81116422A-67 | | $0 \text{ V} \leq V_{\text{IN}} \leq V_{\text{CC}}$ | | 75 | | | Supply Current) | MB81116422A-125 | | No Burst: | | 140 | | | | MB81116422A-100 | Icc1D | tck = min | | 130 | m A | | | MB81116422A-84 | ICCID | All banks active | _ | 120 | | | | MB81116422A-67 | | 0 V ≤ VIN ≤ Vcc | | 110 | | | Precharge Standby | | Ісс2Р | CKE = V _{IL} All banks idle tcκ = min Power down mode 0 V ≤ V _{IN} ≤ V _{CC} | _ | 2 | mA | | (Power Supply Curre | ent) | Icc2N | $ CKE = V_{IH} $ All banks idle $ t_{CK} = min $ $ 0 \ V \le V_{IN} \le V_{CC} $ | _ | 30 | mA | | Active Standby Current
(Power Supply Current) | | Іссзр | $CKE = V_{IL}$ Any bank active $t_{CK} = min$ $0 \ V \le V_{IN} \le V_{CC}$ | _ | 30 | mA | | | | Іссзи | $CKE = V_{IH}$ Any bank active $t_{CK} = min$ $0 \ V \le V_{IN} \le V_{CC}$ | _ | 50 | mA | | Divinet in a d - | MB81116422A-125 | | | | 150 | | | Burst mode
Current | MB81116422A-100 | la | tck = min | | 135 | m A | | (Average Power
Supply Current) | MB81116422A-84 | Icc4 | 0 V ≤ VIN ≤ VCC | _ | 125 | | | Supply Cullent) | MB81116422A-67 | | | | 115 | | | Роко | meter | Cumbal | Conditions | Va | lue | Unit | | |---|-----------------|--------|--|------|------|------------|--| | Pala | metei | Symbol | Conditions | Min. | Max. | | | | | MB81116422A-125 | | Auto Defrach: | | 90 | | | | Refresh Current #1
(Average Power
Supply Current) | MB81116422A-100 | 1 | Auto-Refresh;
 tck = min | | 85 | A | | | | MB81116422A-84 | lccss | trc = min
0 V < V _{IN} < V _{CC} | _ | 80 | - mA | | | | MB81116422A-67 | | O A Z AIN Z ACC | | 75 | | | | | MB81116422A-125 | | Auto-Refresh; | | 140 | | | | Refresh Current #1 | MB81116422A-100 | 1 | tck = min | | 130 | m A | | | (Average Power Supply Current) | MB81116422A-84 | ICC5D | tec = min
terd = min | _ | 120 | | | | | MB81116422A-67 | | $0 \text{ V} \leq V_{\text{IN}} \leq V_{\text{CC}}$ | | 110 | | | | Refresh Current #2
(Average Power Supply Current) | | Icce | Self-Refresh;
$CKE = V_{IL}$
$0 \ V \le V_{IN} \le V_{CC}$ | _ | 2 | mA | | ## ■ AC CHARACTERISTICS (At recommended operating conditions unless otherwise noted.) Notes 2, 3, 4 | Paramete | r Notes | Symbol | | 16422 A
25 | | 16422 A
00 | | 164 22A
84 | | 16422 A
67 | Unit | |------------------------|-----------------|--------------|------|----------------------|------|----------------------|------|----------------------|------|----------------------|------| | | | | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | | | Clock Period | CAS latency = 2 | tск | 12 | | 15 | | 17 | | 20 | | ns | | | CAS latency = 3 | | 8 | | 10 | | 12 | | 15 | | ns | | Clock High Time | | tсн | 3.5 | _ | 4 | _ | 4 | | 4 | _ | ns | | Clock Low Time | | tcL | 3.5 | _ | 4 | _ | 4 | _ | 4 | _ | ns | | Input Set Up Time | | tsı | 3 | _ | 3 | _ | 3 | | 3 | | ns | | Input Hold Time | | ţнı | 1 | _ | 1 | _ | 1 | _ | 1 | | ns | | Access Time *5, 6 | CAS latency = 2 | tac | | 9 | | 9 | _ | 9 | | 10 | ns | | from Clock (tck = min) | CAS latency = 3 | ĮAC | | 7.5 | | 8.5 | | 8.5 | | 9 | ns | | Output in Low-Z | | tolz | 2 | _ | 3 | _ | 3 | _ | 3 | _ | ns | | Output in High-Z | *7 | tонz | 2 | _ | 3 | _ | 3 | _ | 3 | _ | ns | | Output Hold Time | | tон | 2 | _ | 3 | _ | 3 | _ | 3 | _ | ns | | Time between Refresh | | tref | | 65.6 | _ | 65.6 | _ | 65.6 | _ | 65.6 | ms | | Transition Time | | tт | 0.5 | 2 | 0.5 | 2 | 0.5 | 2 | 0.5 | 2 | ns | | Power Down Exit | Гime | t PDE | 3 | _ | 3 | _ | 4 | _ | 5 | _ | ns | #### **BASE VALUES FOR CLOCK COUNT/LATENCY** | Parameter | Notes | Symbol | | 16422 A
25 | | 16422 A
00 | | 16422 A
34 | | 16422 A
57 | Unit | |--------------------------------------|---------|-------------|------|----------------------|------|----------------------|------|----------------------|------|----------------------|------| | | | | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | | | RAS Cycle Time | *8 | trc | 75 | _ | 90 | _ | 100 | _ | 110 | _ | ns | | RAS Access Time | *9 | trac | _ | 45 | _ | 54 | _ | 56 | _ | 60 | ns | | CAS Access Time | *10, 13 | tcac | _ | 21 | _ | 24 | _ | 26 | _ | 30 | ns | | RAS Precharge
Time | | t RP | 27 | _ | 30 | _ | 35 | _ | 40 | _ | ns | | RAS Active Time | | tras | 48 | 100000 | 60 | 100000 | 65 | 100000 | 70 | 100000 | ns | | RAS to CAS Delay
Time | *11 | trcd | 24 | _ | 30 | _ | 30 | _ | 30 | _ | ns | | Write Recovery Time | | twn | 8 | _ | 10 | _ | 12 | _ | 15 | _ | ns | | Write to Precharge
Delay Time | | †RWL | 8 | _ | 10 | _ | 12 | _ | 15 | _ | ns | | RAS to RAS Bank
Active Delay Time | | trrd | 24 | _ | 30 | _ | 30 | _ | 30 | _ | ns | #### **CLOCK COUNT FORMULA Note 13** $Clock \geq \frac{-Base\ Value}{-Clock\ Period} \quad (Round\ off\ a\ whole\ number)$ #### **LATENCY - FIXED VALUES** (The latency values on these parameters are fixed regardless of clock period.) | Parameter | Notes | Symbol | MB81116422A
-125 | MB81116422A
-100 | MB81116422 A
-84 | MB81116422A
-67 | Unit | |---|--------|--------|---------------------|---------------------|----------------------------|--------------------|-------| | CKE to Clock Disable | | Іске | 1 | 1 | 1 | 1 | cycle | | DQM to Output in High-Z | | lpaz | 2 | 2 | 2 | 2 | cycle | | DQM to Input Data Delay | | logo | 0 | 0 | 0 | 0 | cycle | | Last Output to Write
Command Delay | | lowd | 2 | 2 | 2 | 2 | cycle | | Write Command to Input
Data Delay | | lowo | 0 | 0 | 0 | 0 | cycle | | Precharge to Output in High-Z Delay | CL = 2 | Івон | 2 | 2 | 2 | 2 | cycle | | | CL = 3 | | 3 | 3 | 3 | 3 | cycle | | Burst Stop Command to
Output in High-Z Delay | CL = 2 | - Івѕн | 2 | 2 | 2 | 2 | cycle | | | CL = 3 | | 3 | 3 | 3 | 3 | cycle | | Mode Register Access to Banks Active | | IMRD | 2 | 2 | 2 | 2 | cycle | | CAS to CAS Delay (min) | | Icco | 1 | 1 | 1 | 1 | cycle | | CAS Bank Delay (min) | | Ісво | 1 | 1 | 1 | 1 | cycle | **Notes:** *1. Icc depends on the output termination or load conditions, clock cycle rate, and signal clocking rate; The specified values are obtained with the output open and no termination register. - *2. An initial pause (DESL or NOP) of 200 μs is required after power-up followed by a minimum of eight Auto-refresh cycles. - *3. AC characteristics assume $t_T = 1$ ns and 30 pF of capacitive load. - *4. 1.4 V is the reference level for measuring timing of input signals. Transition times are measured between $V_{\rm IH}$ (min) and $V_{\rm IL}$ (max). - *5. Assumes trop and toac are satisfied. - *6. tac also specifies the access time at burst mode except for first access. - *7. Specified where output buffer is no longer driven. - *8. Actual clock count of tac (IRC) will be sum of clock count of tass (IRAS) and tap (IRP). - *9. trac is a reference value. Maximum value is obtained from the sum of trod (min) and toac (max). - *10. Assumes trac and tac are satisfied. - *11. Operation within the trace (min) ensures that trace can be met; if trace is greater than the specified trace (min), access time is determined by teac or tac. - *12. All base values are measured from the clock edge at the command input to the clock edge for the next command input. All clock counts are calculated by a simple formula: clock count equals base value divided by clock period (round off to a whole number). - *13. The teac is programmed by the mode register. Fig. 4 - EXAMPLE OF AC TEST LOAD CIRCUIT Note: AC characteristics are measured in this condition. This load circuits are not applicable for Vo⊩ and Vo∟ #### **■ MODE REGISTER TABLE** - Notes: 1. The latency of CKE (loke) is one clock. - 2. During read mode, burst counter will not be incremented/decremented at the next clock of CSUS command. Output remain the same data. - 3. During the write mode, data at the next clock of CSUS command is ignored. - 2. Precharge command can be posted in conjunction with CKE when burst mode is ended at this clock. - 3. The ACTV command can be latched after tPDE (min) + 1 clock (min). It is recommended to apply NOP command in conjunction with CKE. It is also recommended to apply minimum of 4 clocks to stabilize external clock prior to ACTV command. Note: The BST command is applicable to terminated the full column burst operation. The selection of auto-precharge option is illegal during the full column burst operation except write command at BURST READ & SINGLE WRITE mode. Note: Precharge at write with auto-precharge is started after the that from the end of burst. Even if the final data is masked by DQM, the precharge does not start the clock of final data input. Once Auto-precharge command is asserted, no new command within the same bank can be issued. Auto-precharge command doesn't affect at full column burst operation except Burst Read & Single Write mode. - Notes: 1. Precharge command (PRE or PALL) should be asserted if any bank is active prior to Self-refresh Entry command (SELF). - 2. The Self-refresh Exit command (SELFX) is latched after tPDE (min). It is recommended to apply NOP command in conjunction with CKE. It is also recommended to apply minimum of 4 clocks to stabilize external clock prior to SELFX command. - 3. Either NOP or DESL command can be used during the period. #### ■ PACKAGE DIMENSIONS ## **FUJITSU LIMITED** For further information please contact: #### Japan **FUJITSU LIMITED** Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-88, Japan Tel: (044) 754-3763 Fax: (044) 754-3329 #### North and South America FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A. Tel: (408) 922-9000 Fax: (408) 432-9044/9045 #### Europe FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122 #### Asia Pacific FUJITSU MICROELECTRONICS ASIA PTE. LIMITED #05-08, 151 Lorong Chuan New Tech Park Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220 #### All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams. FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan. #### F9703 © FUJITSU LIMITED Printed in Japan