Reference Design using the UniSLIC14 and the Texas Instruments TCM38C17 Quad Combo

The purpose of this application note is to provide a reference design for the UniSLIC14 and Texas Instruments TCM38C17 Quad Combo.

The network requirements of many countries require the analog subscriber line circuit (SLIC) to terminate the subscriber line with an impedance for voiceband frequencies which is complex, rather than resistive (e.g. 600). The UniSLIC14 accomplishes this impedance matching with a single network connected to the Z_{\top} pin.
The TCM38C17 Quad Combo has a programmable receive output amplifier to adjust the output gain into the SLIC. The output amplifier gain is programmed with two simple resistors. Transhybrid balance is achieved via the TCM38C17 GSX amplifier.

Discussed in this application note are the following:

- 2-wire 600Ω impedance matching.
- Receive gain (4-wire to 2-wire) and transmit gain (2-wire to 4 -wire) calculations.
- Transhybrid balance calculations.
- Reference design for 600Ω 2-wire load.
- Reference design for China complex 2-wire load.

Impedance Matching

Impedance matching of the UniSLIC14 to the subscriber load is important for optimization of 2 wire return loss, which in turn cuts down on echoes in the end to end voice communication path. It is also important for maintaining voice signal levels on long loops. Impedance matching of the UniSLIC14 is accomplished by making the SLIC's impedance (Z $Z_{\text {SLIC }}$, Figure 1) equal to the desired terminating impedance
Z_{0}, minus the value of the protection resistors $\left(Z_{T R}=Z_{O}\right)$. The formula to calculate the proper Z_{T} for matching the 2-wire impedance is shown in Equation 1.
$Z_{T}=200 \cdot\left(Z_{T R}-2 R_{P}\right)$
Equation 1 can be used to match the impedance of the SLIC and the protection resistors $\left(Z_{T R}\right)$ to any known line impedance $\left(Z_{O}\right)$. Figure 1 shows the calculations of Z_{T} to match a resistive and 2 complex loads.

EXAMPLE 1:

Calculate Z_{T} to make $Z_{T R}=600 \Omega$ in series with $2.16 \mu \mathrm{~F}$. $R_{P}=30 \Omega$.
$Z_{T}=200\left(600+\frac{1}{j \omega 2.16 \times 10^{-6}}-(2)(30)\right)$
$Z_{T}=108 \mathrm{k} \Omega$ in series with $0.0108 \mu \mathrm{~F}$.
Note: Some impedance models, with a series capacitor, will cause the op-amp feedback to behave as an open circuit DC. A resistor with a value of about 10 times the reactance of the Z_{T} capacitor $(2.16 \mu \mathrm{~F} / 200=10.8 \mathrm{nF})$ at the low frequency of interest (200 Hz for example) can be placed in parallel with the capacitor in order to solve the problem ($736 \mathrm{k} \Omega$ for a 10.8 nF capacitor).

EXAMPLE 2:

Calculate Z_{T} to make $Z_{T R}=200+680 / / 0.1 \mu \mathrm{~F}$
$R_{P}=30 \Omega$.
$Z_{T}=200\left(200+\frac{680}{1+\mathrm{j} \omega 680(0.1) \times 10^{-6}}-(2)(30)\right)$
$\mathrm{Z}_{\mathrm{T}}=28 \mathrm{k} \Omega$ in series with the parallel combination of $136 \mathrm{k} \Omega$ and 500 pF .

FIGURE 1. IMPEDANCE MATCHING

SLIC in the Active Mode

Figure 2 shows a simplified AC transmission model of the UniSLIC14 and the connection of the TCM38C17 to the SLIC. Circuit analysis of the UniSLIC14 yields the following design equations:
$V_{A}=I_{M} \times 2 R_{S} \times \frac{1}{80 k} \times 200\left(Z_{T R}-2 R_{P}\right) \times 5$
$V_{A}=\frac{I_{M}}{2}\left(Z_{T R}-2 R_{P}\right)$
Node Equation at UniSLIC14 V_{RX} input
$\frac{V_{R X}}{500 \mathrm{k}}-\frac{\mathrm{V}_{\mathrm{A}}}{500 \mathrm{k}}=\mathrm{I}_{\mathrm{X}}$
Substitute Equation 5 into Equation 6
$I_{X}=\frac{V_{R X}}{500 k}-\frac{I_{M}\left(Z_{T R}-2 R_{P}\right)}{1000 k}$

Loop Equation at UniSLIC14 feed amplifier and load
$I_{X} 500 \mathrm{k}-\mathrm{V}_{\mathrm{TR}}+\mathrm{I}_{\mathrm{X}} 500 \mathrm{k}=0$
Substitute Equation 7 into Equation 8
$V_{T R}=2 V_{R X}-I_{M}\left(Z_{T R}-2 R_{P}\right)$
Loop Equation at Tip/Ring interface

Substitute Equation 9 into Equation 10
$\mathrm{V}_{2 \mathrm{~W}}=\mathrm{I}_{\mathrm{M}} \mathrm{Z}_{\mathrm{TR}}-2 \mathrm{~V}_{\mathrm{RX}}$
Substituting $-V_{2 W} / Z_{L}$ into Equation 11 for I_{M} and rearranging to solve for $\mathrm{V}_{2 \mathrm{~W}}$ results in Equation 12.

$$
\begin{equation*}
2 \mathrm{~W}\left(1+\frac{Z_{T R}}{Z_{L}}\right)=-2 \mathrm{~V}_{\mathrm{RX}} \tag{EQ.12}
\end{equation*}
$$

where:
$\mathrm{V}_{\mathrm{RX}}=$ The input voltage at the V_{RX} pin.
$V_{A}=A n$ internal node voltage that is a function of the loop current detector and the impedance matching networks.
$I_{X}=$ Internal current in the SLIC that is the difference between the input receive current and the feedback current.
$I_{M}=$ The AC metallic current.
$R_{P}=A$ protection resistor (typical 30Ω).
$Z_{T}=$ An external resistor/network for matching the line impedance.
$\mathrm{V}_{\mathrm{TR}}=$ The tip to ring voltage at the output pins of the SLIC.
$\mathrm{V}_{2 \mathrm{~W}}=$ The tip to ring voltage including the voltage across the protection resistors.
$\mathrm{Z}_{\mathrm{O}}=$ The line impedance.
$Z_{T R}=$ The input impedance of the SLIC including protection resistors.

FIGURE 2. UniSLIC14 SIMPLIFIED AC TRANSMISSION CIRCUIT AND TCM38C17

Receive Gain (VIN to $V_{2 W}$)

4-wire to 2 -wire gain is equal to the $\mathrm{V}_{2 \mathrm{~W}}$ divided by the input voltage V_{IN}, reference Figure 3. The gain through the TCM38C17 is programmed to be 1.0 using Equation 13, where $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {PCMIN }}=\mathrm{V}_{\text {PWRO }}=\mathrm{V}_{\mathrm{RX}}$.
$G_{(\text {PCMIN-PWRO }+)}=\frac{R_{1}+R_{2}}{4\left(R_{2}+\frac{R_{1}}{4}\right)}$
The input and output gain adjustments are discussed in detail in PCM CODEC / Filter Combo Family: Device Design-in and Application Data [1]. The maximum output (Gain =1) can be obtained by maximizing R_{1} and minimizing R_{2} (Figure 2). This can be done by letting $R_{1}=$ infinity and $R_{2}=0$, as shown in Figure 3.
The receive gain is calculated using Equation 12 and the relationship $Z_{T}=200\left(Z_{T R}-2 R_{P}\right)$.
Equation 14 expresses the receive gain (V_{IN} to $\mathrm{V}_{2 \mathrm{~W}}$) in terms of network impedances.
$G_{4-2}=\frac{V_{2 W}}{V_{I N}}=-2 \frac{Z_{O}}{Z_{O}+Z_{T R}}=-2 \frac{Z_{O}}{Z_{O}+\left(\frac{Z_{T}}{200}+2 R_{P}\right)}$
Notice that the phase of the 4-wire to 2 -wire signal is 180° out of phase with the input signal.

Transmit Gain Across UniSLIC14 (E_{G} to $V_{T X}$)

The 2-wire to 4-wire gain is equal to $\mathrm{V}_{\mathrm{TX}} / \mathrm{E}_{\mathrm{G}}$ with $\mathrm{V}_{\mathrm{RX}}=0$, reference Figure 2.
Loop Equation
$-E_{G}+Z_{L} I_{M}+2 R_{P} I_{M}-V_{T R}=0$
From Equation 9 with $\mathrm{V}_{\mathrm{RX}}=0$
(EQ. 16)

$$
V_{T R}=-I_{M}\left(Z_{T R}-2 R_{P}\right)
$$

Substituting Equation 16 into Equation 15 and simplifying.
$E_{G}=I_{M}\left(Z_{L}+Z_{T R}\right)$
By design, $\mathrm{V}_{\mathrm{TX}}=-\mathrm{V}_{\mathrm{TR}}$, therefore,
$G_{2-4}=\frac{V_{T X}}{E_{G}}=\frac{I_{M}\left(Z_{T R}-2 R_{P}\right)}{I_{M}\left(Z_{L}+Z_{T R}\right)}=\frac{\left(Z_{T R}-2 R_{P}\right)}{\left(Z_{L}+Z_{T R}\right)}$
A more useful form of the equation is rewritten in terms of $\mathrm{V}_{\mathrm{TX}} / \mathrm{V}_{2 \mathrm{~W}}$. A voltage divider equation is written to convert from E_{G} to $V_{2 W}$ as shown in Equation 19.
$V_{2 W}=\left(\frac{Z_{T R}}{Z_{T R}+Z_{L}}\right) E_{G}$
Rearranging Equation 19 in terms of E_{G}, and substituting into Equation 18 results in an equation for 2-wire to 4 -wire gain that's a function of the synthesized input impedance of the SLIC and the protection resistors $\left(Z_{T R}\right)$.
$G_{2-4}=\frac{V_{T X}}{V_{2 W}}=\frac{Z_{T R}-2 R_{P}}{Z_{T R}}=\frac{Z_{0}-2 R_{P}}{Z_{0}}$
Notice that the phase of the 2-wire to 4 -wire signal is in phase with the input signal and that the gain will always be less than one because of the protection resistors.

Transmit Gain Across the System ($V_{\text {2W }}$ to $V_{\text {PCMOUT) }}$

2-wire to 4 -wire gain is equal to the $V_{\text {PCMOUT }}$ voltage divided by the 2-wire voltage $\mathrm{V}_{2 \mathrm{~W}}$, reference Figure 3.
$G_{2-4}=\frac{V_{\text {PCMOUT }}}{V_{2 W}}$
$V_{\text {PCMOUT }}$ is only a function of $V_{T X}$ and the feedback resistors $R_{a 1}$ and R_{f} Equation 22. This is because $V_{I N}$ is considered ground for this analysis, thereby effectively grounding the $\mathrm{V}_{\mathrm{PWRO}}^{+}$output.

FIGURE 3. RECEIVE GAIN G(4-2), TRANSMIT GAIN (2-4) AND TRANSHYBRID BALANCE

$$
\begin{equation*}
\mathrm{V}_{\text {PCMOUT }}=-\mathrm{V}_{\mathrm{TX}} \frac{\mathrm{R}_{\mathrm{f}}}{R_{\mathrm{a} 1}} \tag{EQ.22}
\end{equation*}
$$

An equation for the system transmit gain is achieved by substituting Equation 20 into Equation 22.

$$
\begin{equation*}
G_{2-4}=\frac{V_{\text {PCMOUT }}}{V_{2 W}}=\frac{\left(Z_{0}-2 R_{P}\right)}{Z_{0}} \frac{R_{f}}{R_{a 1}} \tag{EQ.23}
\end{equation*}
$$

To achieve a Transmit Gain of one ($\mathrm{V}_{\text {PCMOUT }} / \mathrm{V}_{2 \mathrm{~W}}$), make $R_{f}=Z_{O}$ and $R_{a}=\left(Z_{0}-2 R_{P}\right)$. Actual values of $R_{a 1}$ and R_{f} were multiplied by 100 to reduce loading effects on the GSX opamp.

Transhybrid Balance G(4-4)

Transhybrid balance is a measure of how well the input signal is canceled (that being received by the SLIC) from the transmit signal (that being transmitted from the SLIC to the CODEC). Without this function, voice communication would be difficult because of the echo.

The signals at $\mathrm{V}_{\mathrm{PWRO}}^{+}$and V_{TX} (Figure 3) are opposite in phase. Transhybrid balance is achieved by summing two signals that are equal in magnitude and opposite in phase into the GSX amplifier.

Transhybrid balance is achieved by summing the PWRO+ signal with the output signal from the UniSLIC14 when proper gain adjustments are made to match $\mathrm{V}_{\mathrm{PWRO}}$ + and V_{TX} magnitudes.

For discussion purpose, the GSX amplifier is redrawn with the external resistors in Figure 4.

FIGURE 4. TRANSHYBRID BALANCE CIRCUIT
The gain through the GSX amplifier from $\mathrm{V}_{\mathrm{PWRO}}+$ is set by resistors $R_{a 2}$ and $R_{f r}$. The gain through the GSX amplifier from $V_{T X}$ is set by resistors $R_{a 1}$ and R_{f}.
Transhybrid balance is achieved by adjusting the magnitude from both $\mathrm{V}_{\mathrm{PWRO}}+$ and V_{TX} so their equal to each other.

Reference Design of the UniSLIC14 and the TCM38C17 With a 600 Load

The design criteria is as follows:

- 4-wire to 2-wire gain ($\mathrm{VP}_{\mathrm{CMIN}}$ to $\mathrm{V}_{2 \mathrm{~W}}$) equal 0 dB
- 2-wire to 4-wire gain ($\mathrm{V}_{2 \mathrm{~W}}$ to $\mathrm{VP}_{\mathrm{CMOUT}}$) equal 0dB
- Two Wire Return Loss greater than $-30 \mathrm{~dB}(200 \mathrm{~Hz}$ to 4 kHz)
- $R p=30 \Omega$

Figure 5 gives the reference design using the Intersil UniSLIC14 and the Texas Instruments TCM38C17 Quad Combo. Also shown in Figure 5 are the voltage levels at specific points in the circuit.

Impedance Matching

The 2-wire impedance is matched to the line impedance Z_{0} using Equation 1, repeated here in Equation 24.
$Z_{T}=200 \cdot\left(Z_{T R}-2 R_{P}\right)$
For a line impedance of $600 \Omega, Z_{T}$ equals:
$Z_{T}=200 \bullet(600-60)=108 \mathrm{k} \Omega$
The closest standard value for Z_{T} is $107 \mathrm{k} \Omega$.

Transhybrid Balance ($Z_{L}=600 \Omega$)

The internal GSX amplifier of the TCM38C17 is used to perform the transhybrid balance function. Transhybrid balance is achieved by summing two signals that are equal in magnitude and opposite in phase into the GSX amplifier. From Equation 23, repeated here in Equation 26, a Transmit Gain ($\mathrm{V}_{\text {PCMOUT }} / \mathrm{V}_{2 \mathrm{~W}}$) of one is achieved if we make $R_{f}=Z_{O}$ and $R_{a 1}=\left(Z_{0}-2 R_{P}\right)$.
$V_{\text {PCMOUT }}=\frac{V_{2 W}\left(Z_{0}-2 R_{P}\right)}{Z_{0}} \frac{R_{f}}{R_{a 1}}$
$R_{f}=Z_{0}=600(100)=60 \mathrm{k} \Omega$
$R_{a 1}=\left(Z_{0}-2 R_{p}\right)=(600-60)(100)=54 k \Omega$
Actual values of $R_{a 1}$ and R_{f} were multiplied by 100 to reduce loading effects on the GSX op-amp.

Closest standard value for R_{f} is $60.4 \mathrm{k} \Omega$
Closest standard value for $\mathrm{R}_{\mathrm{a} 1}$ is $53.6 \mathrm{k} \Omega$
The TCM38C17 receive gain is programmed to 1.0 by maximizing R_{1} and minimizing R_{2} resistor values (Figure 2).

The gain from $\mathrm{PWRO}+/ \mathrm{V}_{\mathrm{RX}}$ through the SLIC at V_{TX} is 1.1 (Eq. 31 in the Intersil UniSLIC14 data sheet).

To achieve transhybrid balance from the PWRO+ pin to PCMOUT set $R_{a 2}=R_{a 1} \times 0.9$.
$R_{a 2}=(53.6 \mathrm{~K})(0.9)=48.24 \mathrm{~K} \Omega$
Closest standard value for $R_{a 2}=48.6 \mathrm{k} \Omega$.

Specific Implementation for China

The design criteria for a China specific solution are as follows:

- Desired line circuit impedance is $200+680 / / 0.1 \mu \mathrm{~F}$
- Receive gain $\left(\mathrm{V}_{2} \mathrm{~W} / \mathrm{V}_{\text {PCMIN }}\right)$ is -3.5 dB
- Transmit gain $\left(\mathrm{V}_{\mathrm{PCMOUT}} / \mathrm{V}_{2 \mathrm{~W}}\right)$ is 0 dB
- 0 dBm 0 is defined as 1 mW into the complex impedance at 1020 Hz
- $R_{p}=30 \Omega$

FIGURE 5. REFERENCE DESIGN OF THE UniSLIC14 AND THE TCM38C17 WITH A 600Ω LOAD IMPEDANCE

Figure 6 gives the reference design using the Intersil UniSLIC14 and the Texas Instruments TCM38C17 Quad Combo. Also shown in Figure 6 are the voltage levels at specific points in the circuit. These voltages will be used to adjust the gains of the network.

Adjustment to Get-3.5dBm0 at the Load Referenced to 600Ω

The voltage equivalent to $0 \mathrm{dBm0}$ into $811 \Omega\left(0 \mathrm{dBm} 0_{(811 \Omega)}\right)$ is calculated using Equation 30 (811Ω is the impedance of complex China load at 1020 Hz).
$0 \mathrm{dBm}_{(811 \Omega)}=10 \log \frac{\mathrm{~V}^{2}}{811(0.001)}=0.90055 \mathrm{~V}_{\mathrm{RMS}}$
The gain referenced back to $0 \mathrm{dBm}_{(600 \Omega)}$ is equal to:
GAIN $=20 \log \frac{0.90055 \mathrm{~V}_{\text {RMS }}}{0.7745 \mathrm{~V}_{\text {RMS }}}=1.309 \mathrm{~dB}$
The adjustment to get $-3.5 \mathrm{dBm0}$ at the load referenced to 600Ω is:

Adjustment $=-3.5 \mathrm{dBm0}+1.309 \mathrm{dBm0}=-2.19 \mathrm{~dB}$
The voltage at the load (referenced to 600Ω) is given in Equation 33:
$-2.19 \mathrm{dBm}_{(600 \Omega)}=10 \log \frac{\mathrm{~V}^{2}}{600(0.001)}=0.60196 \mathrm{~V}_{\mathrm{RMS}}$

Impedance Matching

The 2-wire impedance is matched to the line impedance Z_{0} using Equation 1, repeated here in Equation 34.

$$
\begin{equation*}
Z_{T}=200 \cdot\left(Z_{T R}-2 R_{P}\right) \tag{EQ.34}
\end{equation*}
$$

For a line impedance of $200+680 / / 0.1 \mu \mathrm{~F}, \mathrm{Z}_{\mathrm{T}}$ equals:
$Z_{T}=200 \cdot\left(200+\frac{680}{1+j \omega 680(0.1) \times 10^{-6}}-(2)(30)\right)$
$Z_{T}=200 \cdot(140 \Omega)+\left[200 \bullet 680 \Omega \| \frac{0.1 \mu \mathrm{~F}}{200}\right]$
$Z_{\mathrm{T}}=28 \mathrm{k} \Omega$ in series with the parallel combination of $136 \mathrm{k} \Omega$ (closest standard value for is $137 \mathrm{k} \Omega$ and 500 pF (closest standard value for is 470 pF).

To achieve a 4-wire to 2-wire gain ($\mathrm{V}_{\mathrm{PCMIN}}$ to $\mathrm{V}_{2 \mathrm{~W}}$) that is equivalent to $0 \mathrm{dBm}(600 \Omega)$ at the complex load, the gain through the TCM38C17 ($\mathrm{V}_{\mathrm{PCMIN}}$ to $\mathrm{V}_{\mathrm{PWRO}}^{+}$$)$must equal $2.19 \mathrm{dBm}\left(0.60196 \mathrm{~V}_{\mathrm{RMS}}\right)$. The gain through the TCM38C17 will then equal $-2.19 \mathrm{dBm}\left(0.60196 \mathrm{~V}_{\mathrm{RMS}}\right)$ divided by the input voltage $0 \mathrm{dBm}\left(0.7745 \mathrm{~V}_{\mathrm{RMS}}\right)$. This gain is equal to 0.777 .

The gain through the TCM38C17 ($\mathrm{V}_{\mathrm{PCMIN}}$ to $\mathrm{V}_{\mathrm{PWRO}}^{+}$) is given in Equation 13 and repeated here in Equation 37.
$G_{(\text {PCMIN - PWRO })}=\frac{R_{1}+R_{2}}{4\left(R_{2}+\frac{R_{1}}{4}\right)}$
Setting the gain equal to 0.777 we can now determine the value of the gain setting resistors R_{1} and R_{2}. Selecting the value of R_{1} to be $49.9 \mathrm{k} \Omega, R_{2}$ is calculated to $5.27 \mathrm{k} \Omega$.
(Note: the value of $R_{1}+R_{2}$ should be greater than $10 k \Omega$ but less than $100 \mathrm{k} \Omega$.)
$0.777=\frac{R_{1}+R_{2}}{4\left(R_{2}+\frac{R_{1}}{4}\right)}$

FIGURE 6. REFERENCE DESIGN OF THE UniSLIC14 AND THE TCM38C17 WITH CHINA COMPLEX LOAD IMPEDANCE
$R_{2}=R_{1}\left(\frac{0.222}{2.108}\right)=49.9 \mathrm{k} \Omega(0.105)=5.27 \mathrm{k} \Omega$
The closest standard value for R_{2} is $5.23 \mathrm{k} \Omega$.

Transhybrid Balance

($\left.Z_{L}=200+680 / / 0.1 \mu F\right)$
The internal GSX amplifier of the TCM38C17 is used to perform the transhybrid balance function. The voltage at $\mathrm{V}_{T X}$ is equal to $\mathrm{V}_{\mathrm{PWRO}}^{+}$+ times the 2-wire to 4 -wire gain of the SLIC, as the gain from $V_{R X}$ to $V_{2 W}=1.0$.

The 2-wire to 4 -wire gain is calculated using Equation 20, repeated here in Equation 40.
$G_{2-4}=\frac{V_{T X}}{V_{2 W}}=\frac{Z_{0}-2 R_{P}}{Z_{0}}$
Z_{O} for the China complex load at 1020 Hz is equal to 811Ω.
$\mathrm{G}_{2-4}=\frac{811 \Omega-60 \Omega}{811 \Omega}=0.92601$
The voltage at V_{TX} is equal to $\mathrm{V}_{2 \mathrm{~W}}$ times the 2-wire to 4-wire gain.
$\mathrm{V}_{\mathrm{TX}}=(0.60196)(0.92601)=0.55742 \mathrm{~V}_{\mathrm{RMS}}$
The design specifications require the gain from $\mathrm{V}_{2} \mathrm{~W}$ to $V_{\text {PCMOUT }}$ equal 0 dBm . This results in an output voltage at $V_{\text {PCMOUT }}$ of $0.51769 \mathrm{~V}_{\text {RMS }}$ or $-3.5 \mathrm{dBm}_{(600 \Omega)}$.
$\left(\right.$ Note: $\left.-2.19 \mathrm{dBm} 0_{(811 \Omega)}=-3.5 \mathrm{dBm}_{(600 \Omega)}\right)$.
The gain from V_{TX} to $\mathrm{V}_{\mathrm{PCMOUT}}$ is calculated in Equation 43.
$\mathrm{G}_{\text {VTX-VPCMOUT }}=\frac{0.51769}{0.55742}=0.92872$

Setting this gain equal to R_{f} / $R_{a 1}$ enables the value of R_{f} and $R_{a 1}$ to be determined (Equation 44).
$\frac{R_{f}}{R_{a 1}}=0.92872$
If $R_{f}=49.9 k \Omega$ then $R_{a 1}=53.72 k \Omega$
Closest standard value for $R_{a 1}$ is $53.6 \mathrm{k} \Omega$
The gain from $\mathrm{V}_{\text {PWRO+ }}$ to $\mathrm{V}_{\text {PCMOUT, }}$ to achieve transhybrid balance is calculated in Equation 45.
$G_{\text {VPWRO }}$ + -VPCMOUT $=\frac{0.51769}{0.60196}=0.86000$
Setting this gain equal to $R_{f} / R_{a 2}$ enables the value of R_{f} and $R_{a 2}$ to be determined (Equation 46).
$\frac{R_{f}}{R_{a 1}}=0.86000$
If $R_{f}=49.9 \mathrm{k} \Omega$ then $R_{a 2}=58 \mathrm{k} \Omega$
Closest standard value for Ra 1 is $57.6 \mathrm{k} \Omega$

Reference

[1] Website
www.ti.com/sc/docs/psheets/abstract/apps/slwa006.htm

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site www.intersil.com

