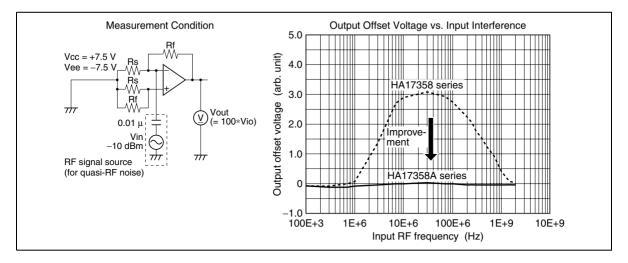
Dual Operational Amplifier

HITACHI

ADE-204-033B (Z)

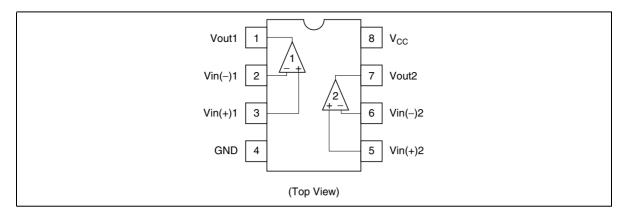

Rev.2 May 2001

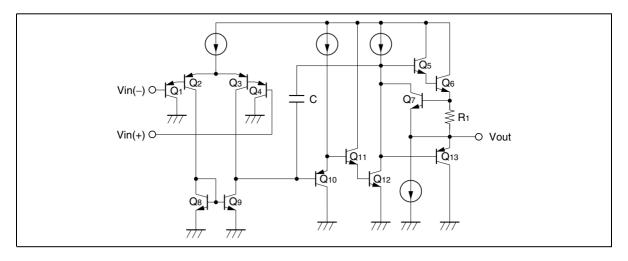
Description

HA17358A series are dual operational amplifier that provide high gain and internal phase compensation, with single power supply. They can be widely applied to control equipments and to general use.

Features

- Wide range of supply voltage, and single power supply used
- Wide range of common mode voltage, and possible to operate with an input about 0 V, and output around 0 V is available
- Frequency characteristics and input bias current are temperature compensated
- Low electro-magnetic susceptibility level




Ordering Information

Type No.	Application	Package	
HA17358A	Commercial use	DP-8B	
HA17358AF		FP-8D	
HA17358ARP		FP-8DC	

Pin Arrangement

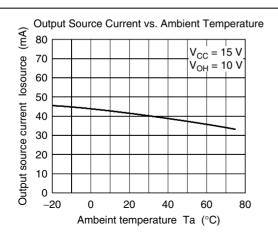
Circuit Schematic (1/2)

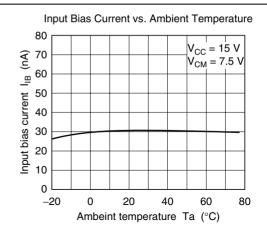
Absolute Maximum Ratings

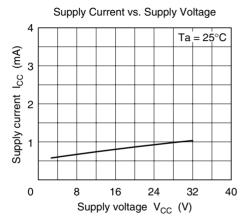
 $(Ta = 25^{\circ}C)$

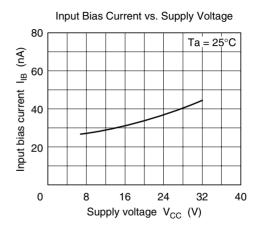
		Ratings			
Item	Symbol	HA17358A	HA17358AF/ARP	Unit	
Supply voltage	V _{cc}	32	32	V	
Sink current	Isink	50	50	mA	
Power dissipation	P _T	570 * ¹	385 *²	mW	
Common mode input voltage	V _{CM}	–0.3 to $V_{\rm cc}$	–0.3 to $V_{\rm cc}$	V	
Differential input voltage	Vin (diff)	±V _{cc}	±V _{cc}	V	
Operating temperature	Topr	-40 to +85	-40 to +85	°C	
Storage temperature	Tstg	-55 to +125	-55 to +125	°C	

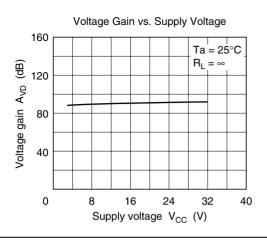
Notes: 1. This is the allowable values up to Ta = 50°C. Derate by 8.3 mW/°C.

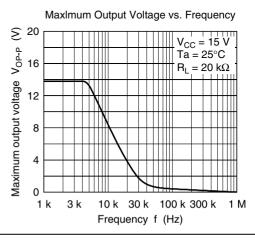

2. These are the allowable values up to $Ta = 25^{\circ}C$ mounting in air. When it is mounted on glass epoxy board of 40 mm \times 40 mm \times 1.5 mmt with 30% wiring density, the allowable value is 570 mW up to $Ta = 45^{\circ}C$. If $Ta > 45^{\circ}C$, derate by 7.14 mW/°C.

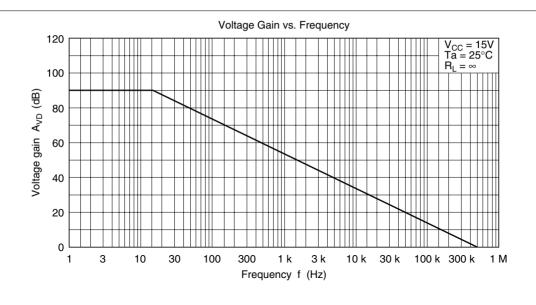

Electrical Characteristics

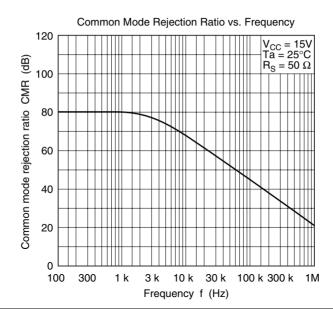

$$(V_{cc} = +15 \text{ V}, \text{Ta} = 25^{\circ}\text{C})$$


Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Input offset voltage	V _{IO}	_	3	7	mV	$V_{\text{CM}} = 7.5 \text{V}, \text{ R}_{\text{S}} = 50 \Omega, \text{ Rf} = 50 \text{k}\Omega$
Input offset current	I _{IO}	_	5	50	nA	$V_{CM} = 7.5V, I_{IO} = I_{I_{(+)}} - I_{I_{(-)}} $
Input bias current	I _{IB}	_	30	250	nA	V _{CM} = 7.5V
Power source rejection ratio	PSRR	_	93	_	dB	$R_s = 1k\Omega$, $Rf = 100k\Omega$
Voltage gain	A _{VD}	75	90	_	dB	$R_L = \infty$, $R_S = 1k\Omega$, $Rf = 100k\Omega$
Common mode rejection ratio	CMR	_	80	_	dB	$R_s = 50\Omega$, $Rf = 5k\Omega$
Common mode input	V _{CM (+)}	13.5	_	_	V	$R_s = 1k\Omega$, $Rf = 100k\Omega$
voltage range	V _{CM (-)}	_	_	-0.3	V	$R_s = 1k^{\bullet}, Rf = 100k\Omega$
Peak-to-peak output voltage	Vop-p	_	13.6	_	V	$f = 100Hz$, $R_L = 20k\Omega$, $R_S = 1k\Omega$, $Rf = 100k\Omega$
Output source current	losource	20	40	_	mA	$V_{IN}^{+} = 1V, V_{IN}^{-} = 0V, V_{OH} = 10V$
Output sink current	losink	10	20	_	mA	$V_{IN}^- = 1V, V_{IN}^+ = 0V, V_{OL} = 2.5V$
Output sink current	losink	15	50	_	μΑ	$V_{IN}^{-} = 1V, V_{IN}^{+} = 0V,$ Vout = 200mV
Supply current	I _{cc}	_	0.8	2	mA	$V_{IN} = GND, R_{L} = \infty$
Slew rate	SR	_	0.2	_	V/µs	$R_{L} = \infty$, $V_{CM} = 7.5V$, $f = 1.5kHz$
Channel separation	CS	_	120	_	dB	f = 1kHz


Characteristic Curves







Solder Mounting Method

- Small and light surface-mount packages require spicial attentions on solder mounting.
 On solder mounting, pre-heating before soldering is needed.
 The following figure show an example of infrared rays refow.
- The difference of thermal expansion coefficient between mounted substrates and IC leads may cause a
 failure like solder peeling or soler wet, and electrical characteristics may change by thermal stress.
 Therefore, mounting should be done after sufficient confirmation for especially in case of ceramic
 substrates.

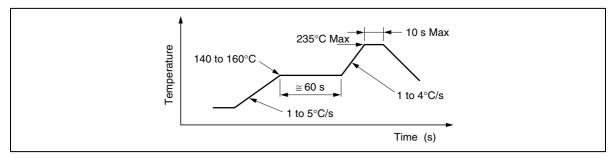
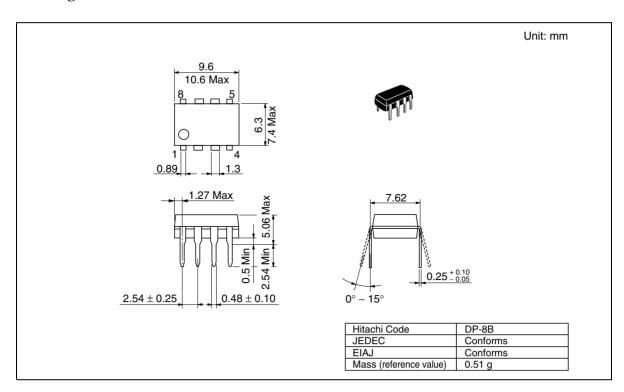
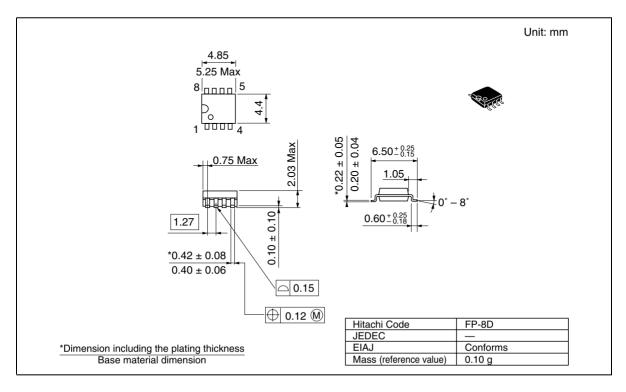
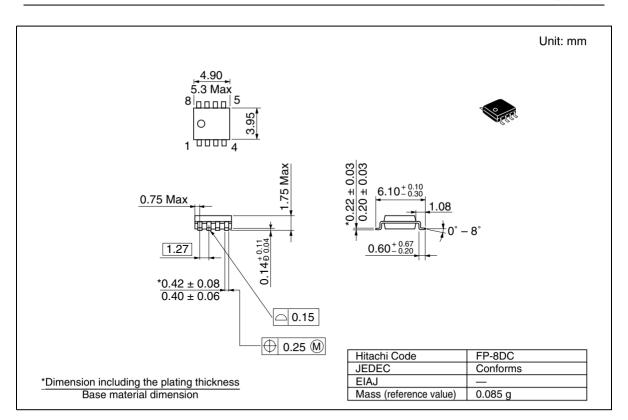





Figure 1 An Example of Infrared Rays Reflow Conditions

Package Dimensions

Disclaimer

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent. copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

Sales Offices

IITACHI

Semiconductor & Integrated Circuits Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: (03) 3270-2111 Fax: (03) 3270-5109

Hitachi Europe Ltd.

NorthAmerica http://semiconductor.hitachi.com/ Europe http://www.hitachi-eu.com/hel/ecg Asia http://sicapac.hitachi-asia.com Japan : http://www.hitachi.co.jp/Sicd/indx.htm

For further information write to:

Hitachi Semiconductor (America) Inc. 179 East Tasman Drive San Jose, CA 95134 Tel: <1> (408) 433-1990 Maidenhead

Electronic Components Group Whitebrook Park Lower Cookham Road Fax: <1>(408) 433-0223 Berkshire SL6 8YA, United Kingdom Fax: <65>-538-6933/538-3877 Tel: <44> (1628) 585000

> Hitachi Europe GmbH Electronic Components Group Dornacher Straße 3 D-85622 Feldkirchen, Munich Germany

Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00

Fax: <44> (1628) 585200

Hitachi Asia Ltd. Hitachi Tower 16 Collyer Quay #20-00 Singapore 049318 Tel: <65>-538-6533/538-8577 URL: http://www.hitachi.com.sg

Hitachi Asia Ltd (Taipei Branch Office) 4/F. No. 167. Tun Hwa North Road Hung-Kuo Building

Taipei (105), Taiwan Tel: <886>-(2)-2718-3666 Fax: <886>-(2)-2718-8180 Telex: 23222 HAS-TP URL: http://www.hitachi.com.tw

7/F., North Tower World Finance Centre. Harbour City, Canton Road Tsim Sha Tsui, Kowloon Hong Kong Tel: <852>-(2)-735-9218 Fax: <852>-(2)-730-0281

Group III (Electronic Components)

Hitachi Asia (Hong Kong) Ltd.

URL: http://semiconductor.hitachi.com.hk

Copyright © Hitachi, Ltd., 2001. All rights reserved. Printed in Japan. Colophon 4.0