

# 5mm Standard T-1 3/4 Type Full Color With Common Anode LED Technical Data Sheet

Part No.: LL-509RGBM2E-004

Spec No.: B508 X360 Rev No.: V.2 Date: Oct./12/2005 Page: 1 OF 10

Approved: 34000 Checked: Wu Drawn: Shu



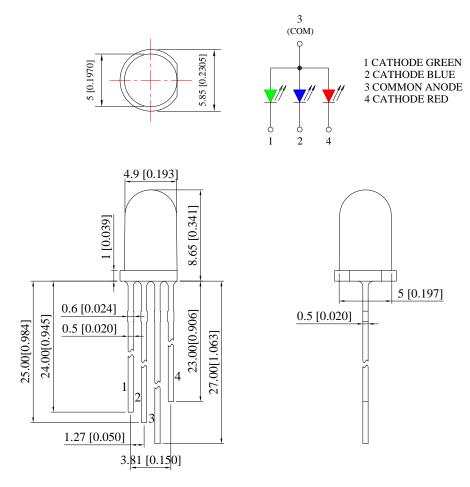
### Features:

- ♦ Uniform light output.
- ♦ Low power consumption.
- ♦ I.C. Compatible.
- ♦ Long life-solid state reliability.
- ♦ The product itself will remain within RoHS compliant Version.

## Descriptions:

- ♦ The Hyper Red source color devices are made with AlGaInP on GaAs substrate Light Emitting Diode.
- ♦ The Pure Green source color devices are made with InGaN on Sapphire substrate Light Emitting Diode.
- ♦ The Blue source color devices are made with InGaN on Sapphire substrate Light Emitting Diode.

## Applications:


- ♦ TV set.
- ♦ Monitor.
- ♦ Telephone.
- ♦ Computer.
- ♦ Circuit board, etc.

Spec No.: B508 X360 Rev No.: V.2 Date: Oct./12/2005 Page: 2 OF 10

Approved: 34000 Checked: Wu Drawn: Shu



# Package Dimension:



| Part No.         | Chip Material | Lens Color     | Source Color |  |
|------------------|---------------|----------------|--------------|--|
| LL-509RGBM2E-004 | AlGaInP       |                | Hyper Red    |  |
|                  | InGaN         | White Diffused | Pure Green   |  |
|                  | InGaN         |                | Blue         |  |

#### Notes:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is  $\pm$  0.25mm (.010") unless otherwise noted.
- 3. Protruded resin under flange is 1.00mm (.039") max.
- 4. Specifications are subject to change without notice.

Spec No.: B508 X360 Rev No.: V.2 Date: Oct./12/2005 Page: 3 OF 10

Approved: 34000 Checked: Wu Drawn: Shu



Absolute Maximum Ratings at Ta=25℃

| Parameters                                            | Emitting<br>Color | Symbol | Max.               | Unit |  |
|-------------------------------------------------------|-------------------|--------|--------------------|------|--|
| Power Dissipation                                     | Hyper Red         |        | 65                 |      |  |
|                                                       | Pure Green        | PD     | 95                 | mW   |  |
|                                                       | Blue              |        | 95                 |      |  |
| Peak Forward Current<br>(1/10 Duty Cycle, 0.1ms       | IFP               | 100    | mA                 |      |  |
| Forward Current                                       | Hyper Red         | IF     | 25                 | mA   |  |
|                                                       | Pure Green        | IF     | 25                 | mA   |  |
|                                                       | Blue              | IF     | 25                 | mA   |  |
| Reverse Voltage                                       | Reverse Voltage   |        | 5                  | V    |  |
| Operating Temperature Range                           |                   | Topr   | -40℃ to +85℃       |      |  |
| Storage Temperature Range                             |                   | Tstg   | -40°C to +100°C    |      |  |
| Lead Soldering Temperature<br>[4mm (.157") From Body] |                   | Tsld   | 260℃ for 5 Seconds |      |  |

Spec No.: B508 X360 Rev No.: V.2 Date: Oct./12/2005 Page: 4 OF 10

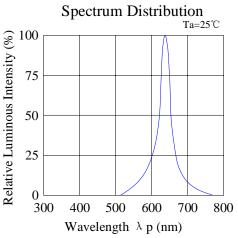
Approved: 24000 Checked: Wu Drawn: Shu

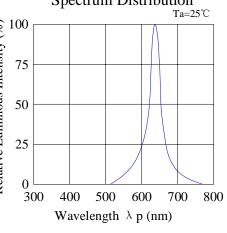


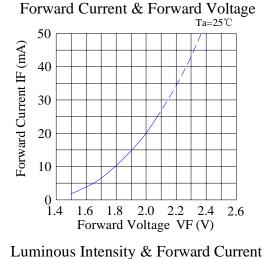
# Electrical Optical Characteristics at $Ta=25^{\circ}$ C

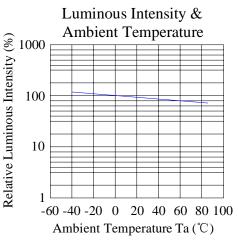
| Parameters                  | Symbol            | Emitting<br>Color | Min. | Тур. | Max. | Unit | Test<br>Condition   |
|-----------------------------|-------------------|-------------------|------|------|------|------|---------------------|
| Luminous Intensity *        | IV                | Hyper Red         | 350  | 600  |      | mcd  | IF=20mA<br>(Note 1) |
|                             |                   | Pure Green        | 450  | 1000 |      |      |                     |
|                             |                   | Blue              | 250  | 500  |      |      |                     |
|                             | 2θ <sub>1/2</sub> | Hyper Red         |      | 60   |      | Deg  | IF=20mA<br>(Note 2) |
| Viewing Angle *             |                   | Pure Green        |      | 60   |      |      |                     |
|                             |                   | Blue              |      | 60   |      |      |                     |
|                             |                   | Hyper Red         |      | 632  |      |      |                     |
| Peak Emission<br>Wavelength | λр                | Pure Green        |      | 520  |      | nm   | IF=20mA             |
|                             |                   | Blue              |      | 468  |      |      |                     |
|                             | λd                | Hyper Red         |      | 624  |      | nm   | IF=20mA<br>(Note 3) |
| Dominant Wavelength         |                   | Pure Green        |      | 525  |      |      |                     |
|                             |                   | Blue              |      | 470  |      |      |                     |
|                             | VF                | Hyper Red         | 1.60 | 2.00 | 2.60 |      |                     |
| Forward Voltage             |                   | Pure Green        | 2.80 | 3.40 | 3.80 | V    | IF=20mA             |
|                             |                   | Blue              | 2.80 | 3.40 | 3.80 |      |                     |
| Reverse Current             | IR                | Hyper Red         |      |      | 10   |      |                     |
|                             |                   | Pure Green        |      |      | 10   | μΑ   | V <sub>R</sub> =5V  |
|                             |                   | Blue              |      |      | 10   |      |                     |

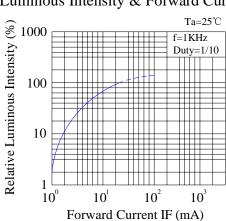
### Notes:

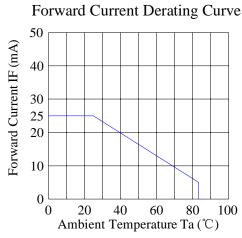

- 1. Luminous Intensity Measurement allowance is  $\pm$  10%.
- 2.  $\theta_{1/2}$  is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
  - 3. The dominant wavelength ( $\lambda d$ ) is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

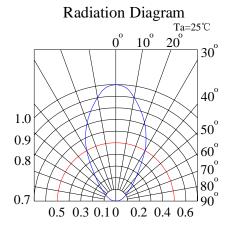

Spec No.: B508 X360 Rev No.: V.2 Date: Oct./12/2005 Page: 5 OF 10


Approved: 34000 Checked: Wu Drawn: Shu





Typical Electrical / Optical Characteristics Curves (25℃ Ambient Temperature Unless Otherwise Noted) Hyper Red:





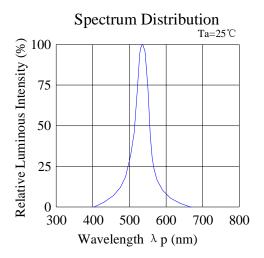


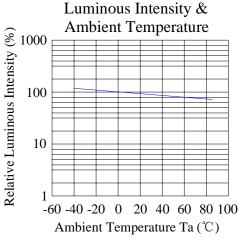


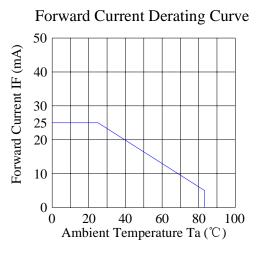


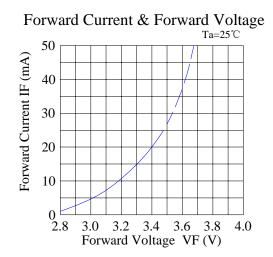


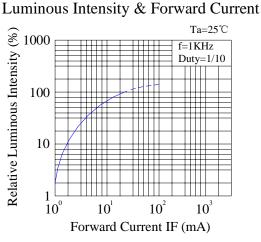

Spec No.: B508 X360 Rev No.: V.2 Date: Oct./12/2005 Page: 6 OF 10

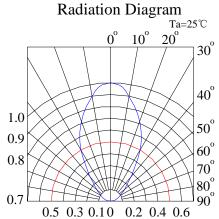

Approved: 3400 Checked: Wu Drawn: Shu


Lucky Light Electronics Co., Ltd.


http://www.luckylightled.com





### Pure Green:

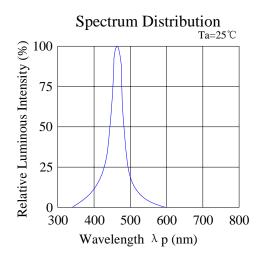


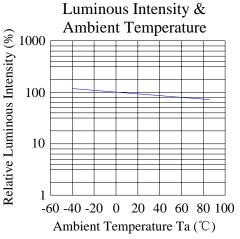


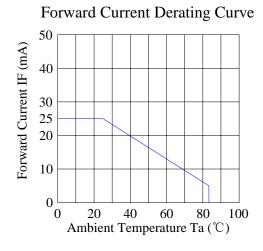


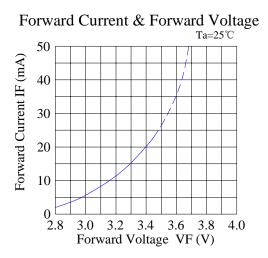


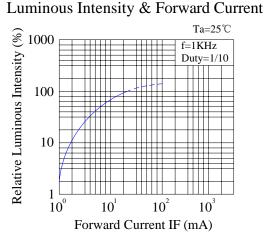


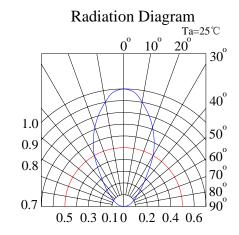





Spec No.: B508 X360 Rev No.: V.2 Date: Oct./12/2005 Page: 7 OF 10


Approved: 34000 Checked: Wu Drawn: Shu





### Blue:














Spec No.: B508 X360 Rev No.: V.2 Date: Oct./12/2005 Page: 8 OF 10

Approved: 34000 Checked: Wu Drawn: Shu



# Reliability Test Items And Conditions:

The reliability of products shall be satisfied with items listed below:

Confidence level: 90%.

LTPD: 10%.

### 1) Test Items and Results:

| Test Item                                               | Standard<br>Test<br>Method | Test Conditions                                        | Note                       | Number<br>of<br>Damaged |
|---------------------------------------------------------|----------------------------|--------------------------------------------------------|----------------------------|-------------------------|
| Resistance to Soldering<br>Heat                         | JEITA ED-4701<br>300 302   | Tsld=260±5℃, 10sec 3mm from the base of the epoxy bulb | 1 time                     | 0/100                   |
| Solder ability                                          | JEITA ED-4701<br>300 303   | Tsld=235±5℃, 5sec<br>(using flux)                      | 1time<br>over 95%          | 0/100                   |
| Thermal Shock                                           | JEITA ED-4701<br>300 307   | 0℃~100℃ 15sec, 15sec                                   | 100 cycles                 | 0/100                   |
| Temperature Cycle                                       | JEITA ED-4701<br>100 105   | -40℃~25℃~100℃~25℃<br>30min,5min,30min,5min             | 100 cycles                 | 0/100                   |
| Moisture Resistance<br>Cycle                            | JEITA ED-4701<br>200 203   | 25℃~65℃~-10℃ 90%RH<br>24hrs/1cycle                     | 10 cycles                  | 0/100                   |
| High Temperature<br>Storage                             | JEITA ED-4701<br>200 201   | Ta=100℃                                                | 1000hrs                    | 0/100                   |
| Terminal Strength<br>(Pull test)                        | JEITA ED-4701<br>400 401   | Load 10N (1kgf)<br>10±1sec                             | No<br>noticeable<br>damage | 0/100                   |
| Terminal Strength<br>(bending test)                     | JEITA ED-4701<br>400 401   | Load 5N (0.5kgf)<br>0°~90°~0° bend 2 times             | No<br>noticeable<br>damage | 0/100                   |
| Temperature Humidity<br>Storage                         | JEITA ED-4701<br>100 103   | Ta=60℃, RH=90%                                         | 1000hrs                    | 0/100                   |
| Low Temperature<br>Storage                              | JEITA ED-4701<br>200 202   | Ta=-40℃                                                | 1000hrs                    | 0/100                   |
| Steady State Operating<br>Life                          |                            | Ta=25℃, IF=30mA                                        | 1000hrs                    | 0/100                   |
| Steady State Operating<br>Life of High Humidity<br>Heat |                            | Ta=60℃, RH=90%,<br>IF=30mA                             | 500hrs                     | 0/100                   |
| Steady State Operating<br>Life of Low<br>Temperature    |                            | Ta=-30℃, IF=20mA                                       | 1000hrs                    | 0/100                   |

### 2) Criteria for Judging the Damage:

| Item               | Symbol | Tost Conditions | Criteria for Judgment |            |
|--------------------|--------|-----------------|-----------------------|------------|
|                    |        | Test Conditions | Min                   | Max        |
| Forward Voltage    | VF     | IF=20mA         |                       | F.V.*)×1.1 |
| Reverse Current    | IR     | VR=5V           |                       | F.V.*)×2.0 |
| Luminous Intensity | IV     | IF=20mA         | F.V.*)×0.7            |            |

\*) F.V.: First Value.

Spec No.: B508 X360 Rev No.: V.2 Date: Oct./12/2005 Page: 9 OF 10

Approved: 34000 Checked: Wu Drawn: Shu



## Please read the following notes before using the product:

### 1. Over-current-proof

Customer must apply resistors for protection, otherwise slight voltage shift will cause big current change (Burn out will happen).

### 2. Storage

- 2.1 Do not open moisture proof bag before the products are ready to use.
- 2.2 Before opening the package, the LEDs should be kept at 30℃ or less and 90%RH or less.
- 2.3 The LEDs should be used within a year.
- 2.4 After opening the package, the LEDs should be kept at  $30^{\circ}$ C or less and 70%RH or less.
- 2.5 The LEDs should be used within 168 hours (7 days) after opening the package.

### 3. Soldering Condition

- 3.1 Pb-free solder temperature profile
- 3.2 Reflow soldering should not be done more than two times.
- 3.3 When soldering, do not put stress on the LEDs during heating.
- 3.4 After soldering, do not warp the circuit board.

### 4. Soldering Iron

Each terminal is to go to the tip of soldering iron temperature less than 260°C for 5 seconds within once in less than the soldering iron capacity 25W. Leave two seconds and more intervals, and do soldering of each terminal. Be careful because the damage of the product is often started at the time of the hand solder.

#### 5. Repairing

Repair should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.

#### 6. Caution in ESD

Static Electricity and surge damages the LED. It is recommended to use a wrist band or anti-electrostatic glove when handling the LED. All devices equipment and machinery must be properly grounded.

Spec No.: B508 X360 Rev No.: V.2 Date: Oct./12/2005 Page: 10 OF 10

Approved: 34000 Checked: Wu Drawn: Shu