

flowPIM 0

Output Inverter Application

600V/10A

3phase SPWM

V_{GEon} = 15 V V_{GEoff}

0 V 32 Ω R_{gon} =

 R_{goff} 16 Ω

Figure 1

IGBT

Typical average static loss as a function of output current

 $P_{loss} = f(I_{out})$

 \mathbf{At} $T_j =$

125 \mathcal{C}

 $Mi^*cos\phi$ from -1 to 1 in steps of 0,2

Figure 3

Αt

DC link =

 $T_j =$ 125 \mathcal{C} 320

 f_{sw} from 2 kHz to 16 kHz in steps of factor 2

٧

Typical average static loss as a function of output current

 $P_{loss} = f(I_{out})$

 \mathbf{At} $T_j =$

125 ${\mathfrak C}$

 $Mi^*cos\phi$ from -1 to 1 in steps of 0,2

Figure 4 Typical average switching loss

as a function of output current

 $P_{loss} = f(I_{out})$

 $\begin{array}{l} \textbf{At} \\ \textbf{T}_j = \end{array}$

125 ${\mathfrak C}$

DC link = 320 ٧

 $f_{\rm sw}$ from 2 kHz to 16 kHz in steps of factor 2

flowPIM 0

Output Inverter Application

600V/10A

Αt

 ${\mathfrak C}$ $T_j =$ 125 DC link = V 320 kHz $f_{sw} =$

60 °C to 100 °C in steps of 5 °C T_h from

 $T_h =$

~.		
$T_j =$	125	C
DC link =	320	V
T _b =	80	C

 \mathcal{C}

Figure 6 Typical available 50Hz output current

At

 $T_j =$ 125 ${\mathfrak C}$ DC link = 320 ٧

 $Mi^*\cos \varphi = 0.8$

 T_h from 60 ℃ to 100 ℂ in steps of 5 ℂ

Typical available 0Hz output current as a function of switching frequency

Αt

 $T_j =$ 125 \mathcal{C} DC link = 320

 T_h from 60 ${\mathbb C}$ to 100 ${\mathbb C}$ in steps of 5 ${\mathbb C}$

Mi = 0

flowPIM 0

Output Inverter Application

600V/10A

 $\begin{array}{lll} \textbf{At} & & & \\ T_j = & 125 & & \mathbb{C} \\ DC \ link = & 320 & & V \\ Mi = & 1 & & \end{array}$

 $\cos \varphi = 0.80$

 f_{sw} from 2 kHz to 16 kHz in steps of factor 2

igure 11 Inverte

 $\begin{array}{lll} \textbf{At} \\ T_j = & 125 & \mathbb{C} \\ \text{DC link} = & 320 & \text{V} \\ \text{Mi} = & 1 \\ \cos \phi = & 0.8 \end{array}$

 f_{sw} from 1 kHz to 16kHz in steps of factor 2

Γ_h = 80 ℃

Motor eff = 0.85

Figure 10 Inverte

Typical efficiency as a function of output power efficiency= $f(P_{\text{out}})$

 $\begin{tabular}{lll} \textbf{At} & & & & & \\ T_j = & & 125 & & & \\ DC \ link = & 320 & & V \\ Mi = & 1 & & \\ \cos \phi = & 0,80 & & \\ \end{tabular}$

f_{sw} from 2 kHz to 16 kHz in steps of factor 2