Fast CMOS Multilevel Pipeline Registers #### **Product Features:** - PI29FCT520T and PI29FCT521T are pinout and function compatible with IDT29FCT520/521, QS29FCT520/521 and AMD's Am29520/521 - Four 8-bit high-speed registers - · Hold, Transfer, and load instructions - Dual two-level or single four-level pipeline operation - TTL input and output levels, reducing problematic "ground bounce" - High output drive IoL = 48 mA - Extremely low static power (1 mW, typ.) - Industrial operating temperature range: -40°C to +85°C - FCT (2xxxT) has a 25Ω series resistor. - · Packages available: - 24-pin 300 mil wide plastic DIP (P24) - 24-pin 150 mil wide plastic QSOP (Q24) - 24-pin 150 mil wide plastic TQSOP (R24) - 24-pin 300 mil wide plastic SOIC (S24) ## **Product Description:** Pericom Semiconductor's PI29FCT series of logic circuits are pro-duced in the Company's advanced 0.8 micron CMOS technology, achieving industry leading speed grades. The PI29FCT520T/2520T and PI29FCT521T are multilevel pipeline registers containing four 8-bit positive triggered registers which can be configured as a dual 2-level or a single 4-level pipeline. These products are designed for use as temporary storage or for storage delays in pipelined systems. The PI29FCT521T differs from the PI29FCT520T/2520T only in the way data is loaded into and between registers in the dual 2-level operation. When data is entered into the first level (I = 2 or I = 1) of the PI29FCT520T/2520T, the existing data in the first level is moved to the second level. In the PI29FCT521T, these instructions simply overwrite the data in the first level. Transfer of data to the second level is achieved using the 4-level shift instruction (I = 0) causing the first level to change. In either part, I = 3 shift instruction puts the registers on hold. Device models available upon request. ## Logic Block Diagram PS2002B 12/10/96 FCT520.pm6 1 12/18/96. 4:44 PM ## **Product Pin Configuration** # Register Selection | S1 | SO | Register | |----|----|----------| | 0 | 0 | B2 | | 0 | 1 | B1 | | 1 | 0 | A2 | | 1 | 1 | A1 | ## **Product Pin Description** | Pin Name | Description | |----------|--| | ŌĒ | Output Enable Input (Active LOW) for 3-State Output Port | | CLK | Clock Input. Enter data into registers on LOW-to-HIGH transistions | | I0,I1 | Instruction Inputs | | S0,S1 | Multiplexer Select. Inputs either register A1, A2, B1, or B2 data to be availabe at the output ports | | Dx | Register Inputs | | Yx | Register Outputs | | GND | Ground | | Vcc | Power | ## PI29FCT520/T2520T Data Loading NOTE: I = 3 FOR HOLD ## PI29FCT521T Data Loading NOTE: I = 3 FOR HOLD 2 PS2002B 12/10/96 FCT520.pm6 2 12/18/96, 4:44 PM ## **Maximum Ratings** (Above which the useful life may be impaired. For user guidelines, not tested.) | Storage Temperature | |--| | Ambient Temperature with Power Applied40°C to +85°C | | Supply Voltage to Ground Potential (Inputs & Vcc Only)0.5V to +7.0V | | Supply Voltage to Ground Potential (Outputs & D/O Only)0.5V to +7.0V | | DC Input Voltage0.5V to +7.0V | | DC Output Current | | Power Dissipation | #### Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. ## **DC Electrical Characteristics** (Over the Operating Range, $TA = -40^{\circ}C$ to $+85^{\circ}C$, $VCC = 5V \pm 5\%$) | Parameters | Description | Test Conditions ⁽¹⁾ | | Min. | Typ ⁽²⁾ | Max. | Units | |------------|-----------------------|--------------------------------|--|------|---------------------------|------|-------| | Voh | Output HIGH Voltage | VCC = MIN., VIN = VIH OR VIL | VCC = MIN., VIN = VIH OR VIL IOH = -15.0 mA | | 3.0 | | V | | Vol | Outrot I OW Valtage | Voc. Mry Vry Vry on Vr | IOL = 48 mA | | 0.3 | 0.50 | V | | V OL | Output LOW Voltage | VCC = MIN., VIN = VIH OR VIL | $IoL = 12 \text{ mA } (25\Omega \text{ series})$ | | 0.3 | | V | | VIH | Input HIGH Voltage | Guaranteed Logic HIGH Level | | 2.0 | | | V | | VIL | Input LOW Voltage | Guaranteed Logic LOW Level | | | | 0.8 | V | | IIH | Input HIGH Current | VCC = MAX. | VIN = VCC | | | 1 | μΑ | | Iπ | Input LOW Current | VCC = MAX. | Vin = GND | | | -1 | μΑ | | Іоzн | High Impedance | Vcc = Max. | Vout = 2.7V | | | 1 | μΑ | | Iozl | Output Current | | Vout = 0.5V | | | -1 | μΑ | | Vik | Clamp Diode Voltage | VCC = MIN., IIN = -18 mA | | | -0.7 | -1.2 | V | | Ios | Short Circuit Current | $VCC = Max.^{(3)}, VOUT = GND$ | | -60 | -120 | | mA | | Ioff | Power Down Disable | Vcc = GND, Vout = 4.5V | | _ | _ | 100 | μΑ | | VH | Input Hysteresis | | | | 200 | | mV | ## **Capacitance** ($T_A = 25^{\circ}C$, f = 1 MHz) | Parameters ⁽⁴⁾ | Description | Test Conditions | Тур | Max. | Units | |---------------------------|--------------------|-----------------|-----|------|-------| | Cin | Input Capacitance | $V_{IN} = 0V$ | 6 | 10 | pF | | Соит | Output Capacitance | $V_{OUT} = 0V$ | 8 | 12 | pF | #### **Notes:** 1. For conditions show as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type. 3 - 2. Typical values are at Vcc = 5.0V, $+25^{\circ}C$ ambient and maximum loading. - 3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second. - 4. This parameter is determined by device characterization but is not production tested. PS2002B 12/10/96 FCT520.pm6 3 12/18/96, 4:44 PM ## **Power Supply Characteristics** | Parameters | Description | Test Condition | ons ⁽¹⁾ | Min. | Typ ⁽²⁾ | Max. | Units | |------------|--|---|---|------|--------------------|---------------------|------------| | Icc | Quiescent Power
Supply Current | Vcc = Max. | Vin = GND or Vcc | | 0.1 | 10 | μA | | ΔΙcc | Supply Current per
Input @ TTL HIGH | Vcc = Max. | $V_{IN} = 3.4V^{(3)}$ | | 0.5 | 2.0 | mA | | Іссь | Supply Current per
Input per MHz ⁽⁴⁾ | Vcc = Max., Outputs Open OE = GND One Input Toggling 50% Duty Cycle | Vin = GND
Vin = Vcc | | 0.15 | 0.25 | mA/
MHz | | Ic | Total Power Supply
Current ⁽⁵⁾ | Vcc = Max.,
Outputs Open
fcp = 10 MHz
50% Duty Cycle | Vin = GND
Vin = Vcc | | 1.5 | 3.5 ⁽⁵⁾ | mA | | | | OE = GND One Bit Toggling fi = 5 MH 50% Duty Cycle | V _{IN} = 3.4V
V _{IN} = GND | | 2.0 | 5.5 ⁽⁵⁾ | | | | | Vcc = Max.,
Outputs Open
fcp = 10 MHz
50% Duty Cycle | Vin = GND
Vin = Vcc | | 3.8 | 7.3 ⁽⁵⁾ | | | | | OE = GND Eight Bits Toggling f1 = 5 MHz 50% Duty Cycle | V _{IN} = 3.4V
V _{IN} = GND | | 6.0 | 16.3 ⁽⁵⁾ | | ### **Notes:** 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device. 4 - 2. Typical values are at Vcc = 5.0V, $+25^{\circ}C$ ambient. 3. Per TTL driven input (VIN = 3.4V, control inputs only); all other inputs at VCC or GND. - 4. This parameter is not directly testable, but is derived for use in Total Power Supply characteristics. - 5. Values for these conditions are examples of the Icc formula. These limits are guAranteed but not tested. - 6. Ic = Iquiescent + Inputs + Idynamic $IC = ICC + \Delta ICC DhNT + ICCD (fCP/2 + fiNi)$ Icc = Quiescent Current ΔIcc = Power Supply Current for a TTL High Input (Vin = 3.4V) DH = Duty Cycle for TTL Inputs High $N_T = Number of TTL Inputs at DH$ ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL) fcp = Clock Frequency for Register Devices (Zero for Non-Register Devices) fi = Input Frequency N_I = Number of Inputs at fi All currents are in milliamps and all frequencies are in megahertz. PS2002B 12/10/96 FCT520.pm6 12/18/96, 4:44 PM ## PI29FCT520T/2520T Switching Characteristics over Operating Range | | | | FCT520A | T/2520AT | FCT520E | T/2520BT | | |--------------|------------------------|---------------------------|---------|----------|---------|----------|------| | | | | C | om. | Com. | | | | Parameters | Description | Conditions ⁽¹⁾ | Min | Max | Min | Max | Unit | | tplh | Propagation Delay | CL = 50 pF | 2.0 | 14.0 | 2.0 | 7.5 | ns | | tphl | CLK to Yx | $R_L = 500 \Omega$ | | | | | | | tplh | Propagation Delay | | 2.0 | 13.0 | 2.0 | 7.5 | ns | | t PHL | S0 or S1 to Yx | | | | | | | | tsu | Setup Time HIGH | | 5.0 | _ | 2.5 | _ | ns | | | or LOW Dx to CLK | | | | | | | | tн | Hold Time HIGH | | 2.0 | _ | 2.0 | _ | ns | | | or LOW Dx to CLK | | | | | | | | tsu | Setup Time HIGH | | 5.0 | _ | 4.0 | _ | ns | | | or LOW I0 or I1 to CLK | | | | | | | | tн | Hold Time HIGH | | 2.0 | _ | 2.0 | _ | ns | | | or LOW I0 or I1 to CLK | | | | | | | | tpzh | Output Enable Time | | 1.5 | 12.0 | 1.5 | 7.0 | ns | | tpzl | OE to Yx | | | | | | | | tphz | Output Disable Time(3) | | 1.5 | 15.0 | 1.5 | 7.5 | ns | | tPLZ | OE to Yx | | | | | | | | tw | Clock Pulse Width(3) | | 7.0 | _ | 5.5 | _ | ns | | | HIGH or LOW | | | | | | | ## PI29FCT521T Switching Characteristics over Operating Range | | | | FCT5 | FCT521AT FCT521BT | | | | |--------------|------------------------|---------------------------|------|-------------------|------|-----|------| | | | | Co | m. | Com. | | | | Parameters | Description | Conditions ⁽¹⁾ | Min | Max | Min | Max | Unit | | tPLH | Propagation Delay | $C_L = 50 \text{ pF}$ | 2.0 | 14.0 | 2.0 | 7.5 | ns | | t PHL | CLK to Yx | $R_L = 500\Omega$ | | | | | | | t PLH | Propagation Delay | | 2.0 | 13.0 | 2.0 | 7.5 | ns | | t PHL | S0 or S1 to Yx | | | | | | | | tsu | Setup Time HIGH | | 5.0 | - | 2.5 | _ | ns | | | or LOW Dx to CLK | | | | | | | | tн | Hold Time HIGH |] [| 2.0 | _ | 2.0 | _ | ns | | | or LOW Dx to CLK | | | | | | | | tsu | Setup Time HIGH |] [| 5.0 | _ | 4.0 | _ | ns | | | or LOW I0 or I1 to CLK |] | | | | | | | tH | Hold Time HIGH |] [| 2.0 | _ | 2.0 | _ | ns | | | or LOW I0 or I1 to CLK | | | | | | | | tpzh | Output Enable Time |] | 1.5 | 12.0 | 1.5 | 7.0 | ns | | t PZL | OE to Yx | | | | | | | | tphz | Output Disable Time(3) |] | 1.5 | 15.0 | 1.5 | 7.5 | ns | | t PLZ | OE to Yx | | | | | | | | tw | Clock Pulse Width(3) |] [| 7.0 | - | 5.5 | _ | ns | | | HIGH or LOW | | | | | | | - 1. See test circuit and wave forms. - 2. Minimum limits are guaranteed but not tested on Propagation Delays. - 3. This parameter is guaranteed but not production tested. ## **Pericom Semiconductor Corporation** 2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com 5 PS2002B 12/10/96 FCT520.pm6 5 12/18/96, 4:44 PM