UNISONIC TECHNOLOGIES CO., LTD

KTD863

Preliminary

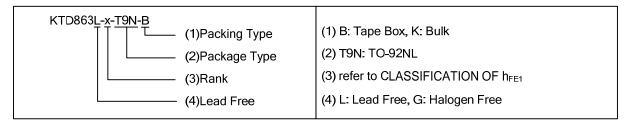
NPN EPITAXIAL SILICON TRANSISTOR

TRIPLE DIFFUSED NPN TRANSISTOR


■ DESCRIPTION

The UTC **KTD863** is a triple diffused NPN transistor. it uses UTC's advanced technology to provide customers with high collector-emitter breakdown voltage and high collector current capability, etc.

The UTC **KTD863** is suitable for voltage regulator, relay and ramp driver, etc.


■ FEATURES

- * High collector-emitter voltage
- * High collector current capability

■ ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
KTD863L-x-T9N-B	KTD863G-x-T9N-B	TO-92NL	Е	С	В	Tape Box	
KTD863L-x-T9N-K	KTD863G-x-T9N-K	TO-92NL	Е	С	В	Bulk	

MARKING INFORMATION

PACKAGE	MARKING			
TO-92NL	L: Lead Free G: Halogen Free Data Code			

www.unisonic.com.tw 1 of 3

■ ABSOLUTE MAXIMUM RATINGS (T_A=25°C)

PARAMETER		SYMBOL	RATINGS	UNIT
Collector-Base Voltage		V_{CBO}	60	>
Collector-Emitter Voltage		V_{CEO}	60	>
Emitter-Base Voltage		V_{EBO}	5	V
Continuous Collector Current	DC	I _C	1	Α
	Pulse	I _{CP}	2	Α
Collector Power Dissipation		Pc	1	W
Junction Temperature		TJ	150	°C
Storage Temperature Range		T _{STG}	-55~+150	°C

Note: Absolute maximum ratings are stress ratings only and functional device operation is not implied.

Absolute maximum ratings are those values beyond which the device could be permanently damaged.

■ ELECTRICAL CHARACTERISTICS (T_A=25°C)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Collector-Emitter Breakdown Voltage	BV _{CEO}	I _C =1mA, I _B =0	60			V
Collector Cut-Off Current	I _{CBO}	V_{CB} =50 V , I_E =0			1	μΑ
Emitter Cut-Off Current	I _{EBO}	V_{EB} =4 V , I_{C} =0			1	μΑ
Collector-Emitter Saturation Voltage	V _{CE(sat)}	I _C =500mA, I _B =50mA		0.15	0.5	V
Base-Emitter Saturation Voltage	V _{BE(sat)}	I _C =500mA, I _B =50mA		0.85	1.2	V
DC Current Cair	h _{FE1}	I _C =50mA,V _{CE} =2V	60		320	
DC Current Gain	h _{FE2}	I _C =1A,V _{CE} =2V	30			
Transition Frequency	f_T	I _C =50mA, V _{CE} =10V		150		MHz
Collector Output Capacitance	C _{ob}	V _{CB} =10V, f=1MHz, I _E =0		12		pF

■ CLASSIFICATION OF hFE1

RANK	0	Υ	GR
RANGE	60~120	100~200	160~320

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

