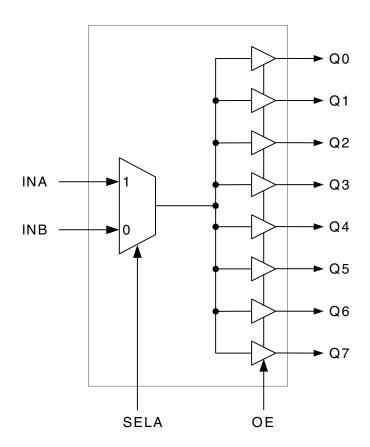


DATASHEET

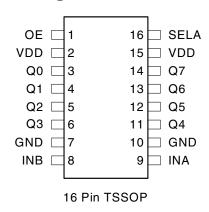
Description

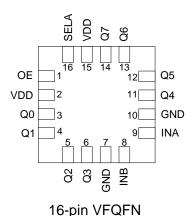

The 552-02S is a low skew, single-input to eight- output clock buffer. The device offers a dual input with pin select for switching between two clock sources. It has best in class Additive Phase Jitter of sub 50fsec

IDT makes many non-PLL and PLL based low skew output devices as well as Zero Delay Buffers to synchronize clocks. Contact us for all of your clocking needs.

Features

- Low RMS Additive Phase Jitter: 50fs
- Low output skew: 50ps
- Operating Voltages of 1.8V to 3.3V
- Packaged in 16-pin TSSOP and 16-pin VFQFN, Pb-free
- Input clock multiplexer simplifies clock selection
- Output Enable pin tri-states outputs
- Input/Output clock frequency up to 200 MHz
- Low power CMOS technology
- 3.3V tolerant inputs
- Extended temperature (-40°C to +105°C)


Block Diagram



1

Pin Assignments

Input Source Select

SELA	Input
0	INB
1	INA

Pin Descriptions

Pin	Pin	Pin	Pin Description
Number	Name	Type	
1	OE	Input	Output Enable. Tri-states outputs when low. Internal pull-up resistor.
2	VDD	Power	Connect to +1.8V, +2.5V or +3.3V. Must be the same as pin 15.
3	Q0	Output	Clock Output 0.
4	Q1	Output	Clock Output 1.
5	Q2	Output	Clock Output 2.
6	Q3	Output	Clock Output 3.
7	GND	Power	Connect to ground.
8	INB	Input	Clock Input B. 3.3V tolerant.
9	INA	Input	Clock Input A. 3.3V tolerant.
10	GND	Power	Connect to ground.
11	Q4	Output	Clock Output 4.
12	Q5	Output	Clock Output 5.
13	Q6	Output	Clock Output 6.
14	Q7	Output	Clock Output 7.
15	VDD	Power	Connect to +1.8V, +2.5V or +3.3V. Must be the same as pin 2.
16	SELA	Input	Selects either INA or INB. Internal pull-up resistor.

External Components

A minimum number of external components are required for proper operation. Decoupling capacitors of 0.01 μ F should be connected between VDD on pin 2 and GND on pin 7, and between VDD on pin 15 and GND on pin 10, as close to the device as possible. A 33 Ω series terminating resistor should be used on each clock output if the trace is longer than 1 inch.

To achieve the low output skews that the 552-02S is capable of, careful attention must be paid to board layout. Essentially, all 8 outputs must have identical terminations, identical loads, and identical trace geometries. If they do not, the output skew will be degraded. For example, using a 30Ω series termination on one output (with 33Ω on the others) will cause at least 15ps of skew.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the 552-02S. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

ltem	Rating
Supply Voltage, VDD	3.465V
All Inputs and Outputs	-0.5 V to 3.465V
Ambient Operating Temperature, Extended	-40 to +105°C
Storage Temperature	-65 to +150 °C
Junction Temperature	175 °C
Soldering Temperature	260 °C

Recommended Operation Conditions

Parameter	Min.	Тур.	Max.	Units
Ambient Operating Temperature, Extended	-40	-	+105	°C
Power Supply Voltage (measured in respect to GND)	+1.71		+3.465	V

DC Electrical Characteristics

VDD=1.8 V ±5%, Ambient temperature -40°C to +105°C, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Operating Voltage	VDD		1.71		1.89	V
Input High Voltage, INA, INB	V _{IH}	Note 1	0.7xVDD		1.89	V
Input Low Voltage, INA, INB	V _{IL}	Note 1			0.3xVDD	V
Input High Voltage, OE, SELA	V _{IH}		0.7xVDD		VDD	V
Input Low Voltage, OE, SELA	V _{IL}				0.3xVDD	V
Output High Voltage	V _{OH}	I _{OH} = -10 mA	1.3			V
Output Low Voltage	V _{OL}	I _{OL} = 10 mA			0.35	V
Operating Supply Current	IDD	No load, 135 MHz		32		mA

VDD=2.5 V ±5%, Ambient temperature -40°C to +105°C, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Operating Voltage	VDD		2.375		2.625	V
Input High Voltage, INA, INB	V _{IH}	Note 1	0.7xVDD		2.625	V
Input Low Voltage, INA, INB	V _{IL}	Note 1			0.3xVDD	V
Input High Voltage, OE, SELA	V _{IH}		0.7xVDD		VDD	V
Input Low Voltage, OE, SELA	V _{IL}				0.3xVDD	V
Output High Voltage	V _{OH}	I _{OH} = -16 mA	1.8			V
Output Low Voltage	V _{OL}	I _{OL} = 16 mA			0.5	V
Operating Supply Current	IDD	No load, 135 MHz		43		mA

VDD=3.3 V ±5%, Ambient temperature -40°C to +105°C, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Operating Voltage	VDD		3.135		3.465	V
Input High Voltage, INA, INB	V _{IH}	Note 1	0.7xVDD		3.465	V
Input Low Voltage, INA, INB	V _{IL}	Note 1			0.3xVDD	V
Input High Voltage, OE, SELA	V _{IH}		0.7xVDD		VDD	V
Input Low Voltage, OE, SELA	V _{IL}				0.3xVDD	V
Output High Voltage	V _{OH}	I _{OH} = -25 mA	2.2			V
Output Low Voltage	V _{OL}	I _{OH} = 25 mA			0.7	V
Operating Supply Current	IDD	No load, 135 MHz		55		mA

AC Electrical Characteristics

VDD = 1.8V ±5%, Ambient Temperature -40°C to +105°C, unless stated otherwise

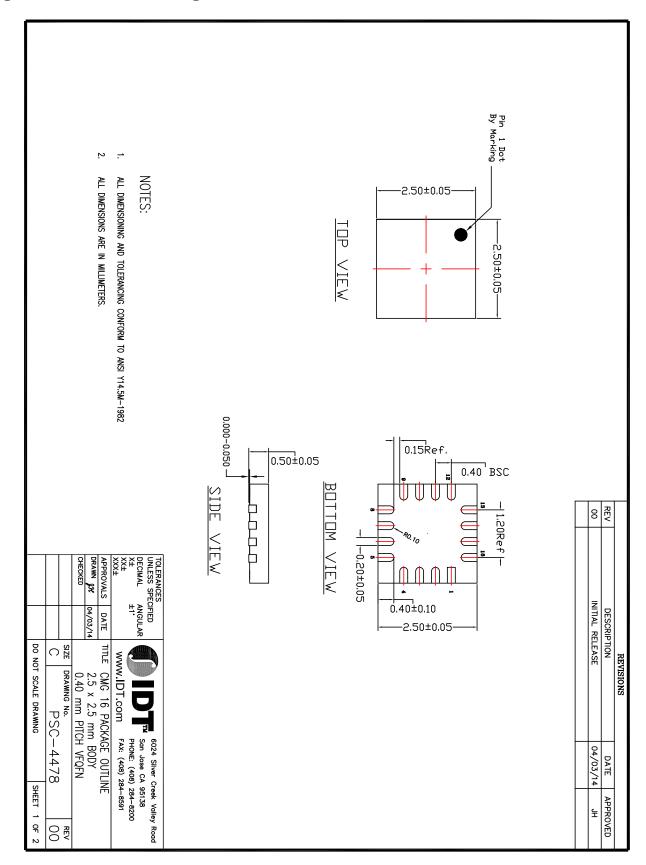
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input Frequency			0		200	MHz
Output Rise Time	t _{OR}	0.36 to 1.44 V, C _L =5 pF		1	1.5	ns
Output Fall Time	t _{OF}	1.44 to 0.36 V, C _L =5 pF		1	1.5	ns
Start-up Time	t _{START-UP}	Part start-up time for valid outputs after VDD ramp-up			2	ms
Propagation Delay	Note 1	135MHz	2	2.5	3	ns
Buffer Additive Phase Jitter, RMS		125MHz, Integration Range: 12KHz-20MHz		50	65	ps
Output to output skew	Note 2	Rising edges at VDD/2		0	65	ps
Input A to Input B skew	Note 3			0	50	ps

VDD = 2.5V ±5%, Ambient Temperature -40°C to +105°C, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input Frequency			0		200	MHz
Output Rise Time	t _{OR}	0.5 to 2.0 V, C _L =5 pF		0.6	1.0	ns
Output Fall Time	t _{OF}	2.0 to 0.5 V, C _L =5 pF		0.6	1.0	ns
Start-up Time	t _{START-UP}	Part start-up time for valid outputs after VDD ramp-up			2	ms
Propagation Delay	Note 1	135MHz	2	2.7	3.5	ns
Buffer Additive Phase Jitter, RMS		125MHz, Integration Range: 12KHz-20MHz		50	65	ps
Output to output skew	Note 2	Rising edges at VDD/2		0	65	ps
Input A to Input B skew	Note 3			0	50	ps

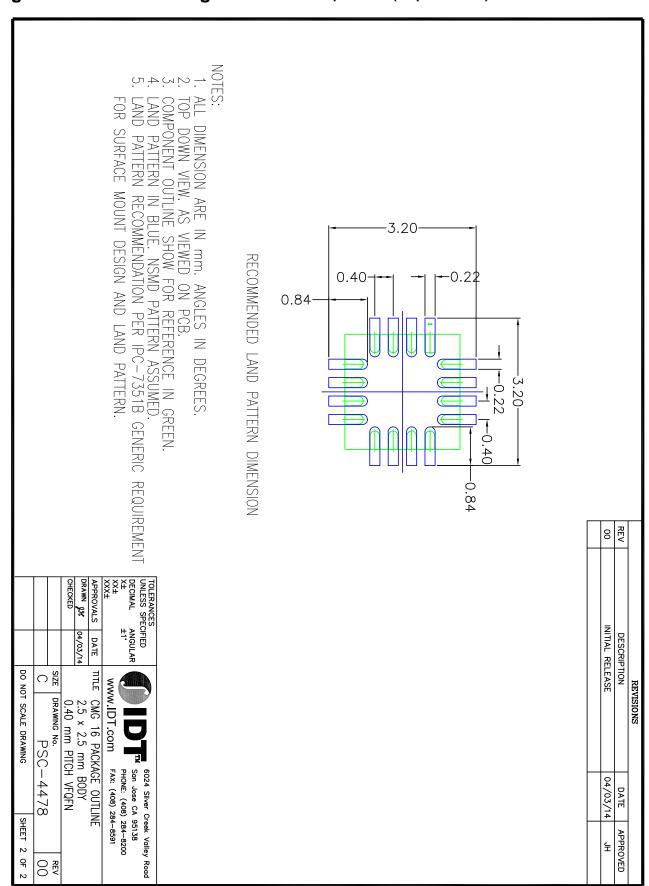
VDD = 3.3V ±5%, Ambient Temperature -40°C to +105°C, unless stated otherwise

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input Frequency			0		200	MHz
Output Rise Time	t _{OR}	0.66 to 2.64 V, C _L =5 pF		0.6	1.0	ns
Output Fall Time	t _{OF}	2.64 to 0.66 V, C _L =5 pF		0.6	1.0	ns
Start-up Time	t _{START-UP}	Part start-up time for valid outputs after VDD ramp-up			2	ms
Propagation Delay	Note 1	135MHz	2	2.5	3	ns
Buffer Additive Phase Jitter, RMS		125MHz, Integration Range: 12KHz-20MHz		50	65	ps
Output to output skew	Note 2	Rising edges at VDD/2		0	65	ps
Input A to Input B skew	Note 3			0	50	ps

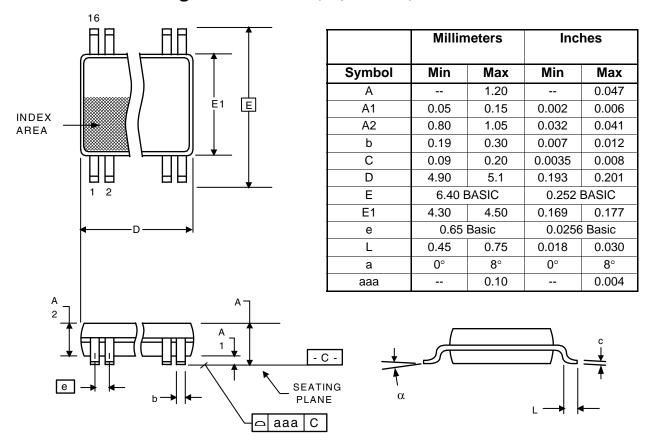

Notes:

- With rail-to-rail input clock.

- 2. Between any two outputs with equal loading.
 3. Propagation delay matching through the part.
 4. Duty cycle on outputs will match incoming clock duty cycle. Consult IDT for tight duty cycle clock generators.

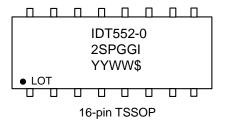


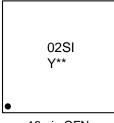
Package Outline and Package Dimensions (16-pin VFQFN)



Package Outline and Package Dimensions, cont. (16-pin VFQFN)

Package Outline and Package Dimensions (16-pin TSSOP)


Ordering Information


Part / Order Number	Marking	Shipping Packaging	Package	Temperature
552-02SPGGI	TBD	Tubes	16-pin TSSOP	-40°C to +105°C
552-02SPGGI8		Tape and Reel	16-pin TSSOP	-40°C to +105°C
552-02SCMGI		Tubes	16-pin VFQFN	-40°C to +105°C
552-02SCMGI8		Tape and Reel	16-pin VFQFN	-40°C to +105°C

[&]quot;G" after the two-letter package code denotes Pb-Free configuration, RoHS compliant.

Marking Diagrams

16-pin QFN

Notes:

- 1. "**" is the lot sequence.
- 2. "YYWW" or "Y" is the last digit(s) of the year and week that the part was assembled.
- 3. "\$" denotes the mark code.
- 4. "LOT" denotes lot number.
- 5. "G" after the two-letter package code denotes RoHS compliant package.
- 6. "I" denotes extended temperature range device.
- 7. Bottom marking: country of origin (TSSOP only).

Revision History

Rev.	Date	Originator	Description of Change	
Α	07/11/16	H.G.	Release to final.	

Corporate Headquarters 6024 Silver Creek Valley Road San Jose, CA 95138 USA www.IDT.com

Sales

1-800-345-7015 or 408-284-8200 Fax: 408-284-2775

www.IDT.com/go/sales

Tech Support

www.idt.com/go/support

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Product specification subject to change without notice. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.

Copyright ©2016 Integrated Device Technology, Inc.. All rights reserved.