

Semiconductor Power Solutions

48 V_{IN} and 3.3 - 18 V_{OUT}, Cool-Power ZVS Isolated DC-DC Converter Modules

Product Description

The Cool-Power ZVS Isolated Converter Module Series consists of high density isolated DC-DC converters implementing Zero Voltage Switching topology.

The 48 Vin Cool-Power series operates over a wide input range of 36 V to 75 V with 3.3 V and 12 V output models and a narrower range of 41 V to 57 V at 18 V output for PoE and other applications. Both model sets produce 60W of output power, yeilding an unprecedented power density of 400 W/in³.

Device	Out	I _{OUT} Max	
Device	Set	Range	1001 14107
PI3101-00-HVIZ	3.3 V	2.97 to 3.63 V	18 A
PI3105-00-HVIZ	12 V	9.6 to 13.2 V	5 A
PI3110-01-HVIZ	18 V	16.2 to 19.8 V	3.3 A

These converter modules are surface mountable and only ~.5" square in area achieving ~50% space reduction versus conventional solutions.

A switching frequency of 900 kHz allows for small input and output filter components which further reduces the total size and cost of the overall system solution. The output voltage is sensed and fed back to the internal controller using a proprietary isolated magnetic feedback scheme which allows for high bandwidth and good common mode noise immunity.

The 48 Volt PI31xx series requires no external feedback compensation and offers a total solution with a minimum number of external components. A rich feature set is offered, including output voltage trim capability, output over-voltage protection, adjustable soft-start, over-current protection with auto-restart, over and under input voltage lockout and a temperature monitoring and protection function that provides an analog voltage proportional to the die temperature as shut down and alarm capabilities.

Features

- Efficiency up to 89%
- High switching frequency minimizes input filter requirements and reduces output capacitance
- Proprietary "Double-Clamped" ZVS Buck-Boost Topology
- · Proprietary isolated magnetic feedback
- Small footprint (0.57 in2) enables PCB area savings
- Very low profile (0.265 in)
- On/Off Control, positive logic
- Wide trim range +10/-20%
- Temperature Monitor (TM) & Over-Temperature Protection (OTP)
- Input UVLO & OVLO and output OVP
- Over current protection with auto restart
- Adjustable soft-start
- · 2250 Vdc input to output isolation
- Surface Mountable 0.87" x 0.65" x 0.265" package

Applications

- Space Constrained Systems
- Isolated Board Level Power
- Network Power Systems
- Telecommunications
- Distributed Power Architecture
- PoE-Power Over Ethernet
- IPoL Isolated Point of Load Power

Package Information

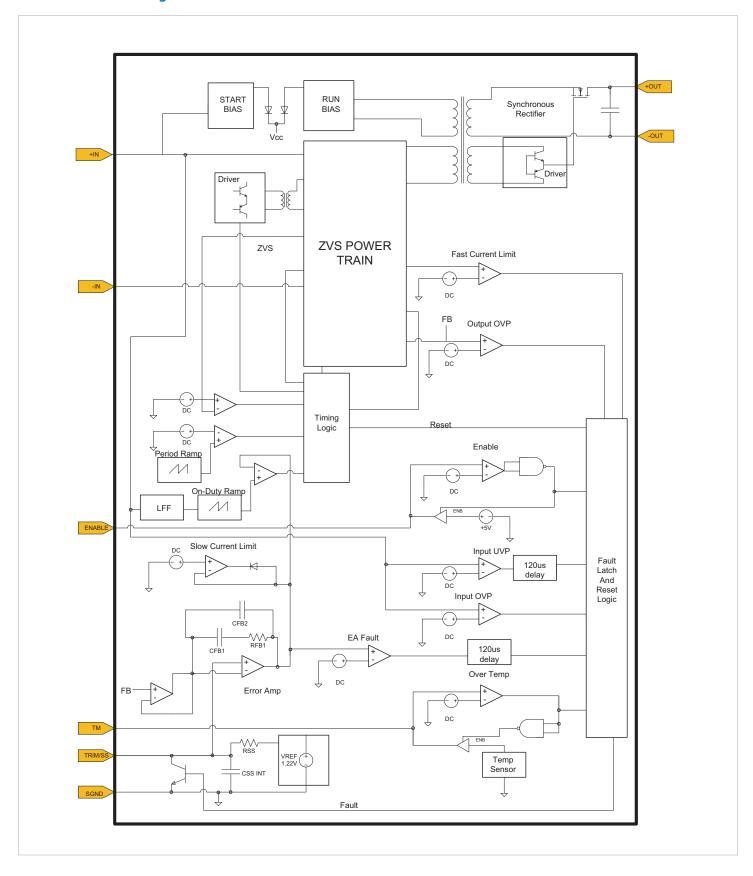
- Surface Mountable 0.87" x 0.65" x 0.265" package
- Weight = 7.8 grams

Contents

Contents	Page
Order Information	3
Absolute Maximum Ratings	4
Functional Block Diagram	5
Pin Description	6
Package Pin-Out	6
PI3101-00-HVIZ Electrical Characteristics	7
PI3105-00-HVIZ Electrical Characteristics	11
PI3110-01-HVIZ Electrical Characteristics	15
Functional Description	19
Input Power Pins	19
ENABLE	19
TRIM/SS	19
TM	20
SGND	20
Output Power Pins	20
Package Outline & Recommended PCB Land Pattern	21
Warranty Information	22

Order Information

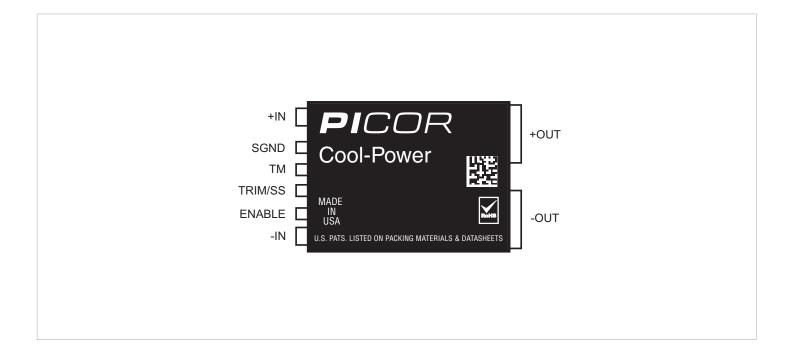
Cool-Power	VIN	Vout	lout Max	Package	Transport Media
PI3101-00-HVIZ	36 - 75 V	3.3 V	18 A	0.87" x 0.65" x 0.265"	TRAY
PI3105-00-HVIZ	36 - 75 V	12 V	5 A	0.87" x 0.65" x 0.265"	TRAY
PI3110-01-HVIZ	41 - 57 V	18 V	3.3 A	0.87" x 0.65" x 0.265"	TRAY
Also Available					
PI3109-01-HVIZ	18 - 36 V	5 V	10 A	0.87" x 0.65" x 0.265"	TRAY
PI3106-01-HVIZ	18 - 36 V	12 V	4.2 A	0.87" x 0.65" x 0.265"	TRAY
PI3109-00-HVMZ	16 - 50 V	5 V	10 A	0.87" x 0.65" x 0.265"	TRAY
PI3106-00-HVMZ	16 - 50 V	12 V	4.2 A	0.87" x 0.65" x 0.265"	TRAY
PI3111-00-HVMZ	16 - 5 0V	15 V	3.33 A	0.87" x 0.65" x 0.265"	TRAY



Absolute Maximum Ratings

lame	Rating	
IN to -IN Max Operating Voltage	PI3101-00-HVIZ/PI3105-00-HVIZ	PI3110-01-HVIZ
-in to -in max operating voltage	-1.0 to 75 Vdc (operating)	-1.0 to 57 Vdc (operating)
-IN to -IN Max Peak Voltage	PI3101-00-HVIZ/PI3105-00-HVIZ	PI3110-01-HVIZ
The to the televioletic	100 Vdc (non-operating 100ms)	80 Vdc (non-operating 100ms)
NABLE to -IN	-0.3 to 6.0 Vdc	
M to -IN	-0.3 to 6.0 Vdc	
RIM/SS to –IN	-0.3 to 6.0 Vdc	
-OUT to -OUT	See relevant model output section	
Continuous Output Current	See relevant model output section	
eak Output Current	See relevant model output section	
perating Junction Temperature	-40 to 125°C	
torage Temperature	-50 to 125°C	
ase Temperature During Reflow	245°C	

Functional Block Diagram



Pin Description

Pin Name	Description
+IN	Primary side positive input voltage terminals.
-IN	Primary side negative input voltage terminals.
ENABLE	Converter enable option, functions as 5V reference and on/off control pin. Pull low for off.
TRIM/SS	External soft start pin and trim function. Connect to SGND or ENABLE through resistor for trim up or trim down.
TM	Temperature measurement output pin.
SGND	Signal ground, primary side referenced.
+OUT	Isolated secondary DC output voltage positive terminals.
-OUT	Isolated secondary DC output voltage negative terminals.

Package Pin-Out

Unless otherwise specified: 36 V < V_{IN} < 75 V, 0 A < I_{OUT} < 18 A, -40°C $\,$ < T_{CASE} < 100°C $^{(1)}$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
		Input Specifications				
Input Voltage Range	V _{IN}	input specifications	36	48	75	Vdc
Input dv/dt (1)	V _{INDVDT}	V _{IN} = 75 V	30		1.0	V/µs
Input Under-Voltage Turn-on	V _{UVON}	I _O = 1.8 A	32.5	34.0	35.0	Vdc
Input Under-Voltage Turn-off	V _{UVOFF}	I _O = 1.8 A	30.5	32.0	33.0	Vdc
Input Under-Voltage Hysteresis	Vuvh	I _O = 1.8 A	30.3	2	33.0	Vdc
Input Over-Voltage Turn-on	V _{OVON}	I _O = 1.8 A	75.7	78	81.0	Vdc
Input Over-Voltage Turn-off	Vovor	I _O = 1.8 A	77.7	80.0	82.3	Vdc
Input Over-Voltage Hysteresis	VOVOFF	I _O = 1.8 A	77.7	1.6	02.5	Vdc
Input Quiescent Current	IQ	$V_{IN} = 48 \text{ V}, \text{ ENABLE} = 0 \text{ V}$		2.5		mAdc
Input Idling Power	P _{IDLE}	V _{IN} = 48 V, I _{OUT} = 0 A		4		W
Input Standby Power	P _{SBY}	V _{IN} = 48 V, ENABLE = 0 V		0.120		W
Input Current Full Load		$T_{CASE} = 100^{\circ}\text{C}$ $I_{OUT} = 18 \text{ A } \eta_{FL} = 86.5\% \text{ typical V}_{IN} = 48 \text{ V}$		1.43		Adc
input Current run Load	I _{IN}	$L_{IN} = 2 \mu H C_{IN} = 47 \mu F 100 V electrolytic$		1.43		Auc
Input Reflected Ripple Current	I _{INRR}	$+ 2 \times 1 \mu F 100 \text{ V} X7R \text{ ceramic}$		10		mApp
December and ad Ext Innut		•				
Recommended Ext Input	C _{IN}	$C_{IN} = 47 \mu F 100 \text{ V electrolytic} + 2 \times 1 \mu F 100 \text{ V X7R ceramic}$		49		μF
Capacitance		C _{IN} = Cbulk + Chf				
		Output Specifications				
Output Voltage Set Point	V _{OUT}	I _{OUT} = 9 A		3.3		Vdc
		0°C <t<sub>CASE < 100°C</t<sub>	-3		+3	%
Total Output Accuracy	V _{OA}	-40°C <t<sub>CASE < 0°C</t<sub>	-4		+3	%
Output Voltage Trim Range	V _{OADJ}		-10%		10%	%
Output Current Range	I _{OUT}				18	Adc
Over Current Protection	I _{OCP}		18.8	26	34	Adc
Efficiency – Full Load	η _{FL}	T _{CASE} = 100°C, V _{IN} = 48 V	84.5	86.5		%
Efficiency – Half Load	ηΗΙ	$T_{CASE} = 100^{\circ}C$, $V_{IN} = 48 \text{ V}$		84.5		%
Output OVP Set Point	V _{OVP}	CASE 11 17 III	3.9	4.1	4.3	Vdc
Output Ripple Voltage	V _{ORPP}	C _{OUT} = 12 x 10 μF 10 V X7R DC-20 MHz		75		mVpp
Switching Frequency	f _{SW}			900		kHz
Output Turn-on Delay Time	tondly	V _{IN} = V _{UVON} to ENABLE = 5 V		80		ms
Output Turn-off Delay Time	torbly	$V_{IN} = V_{UVOFF}$ to ENABLE < 1.8 V		10		μs
Soft-Start Ramp Time	t _{SS}	ENABLE = 5 V to 90% V _{OUT} C _{REF} = 0		230		μs
Maximum Load Capacitance	C _{OUT}	$C_{REF} = 1 \mu F$, $C_{OUT} = Al$ Electrolytic		250	10000	μF
	2001	$I_{OUT} = 25\%$ step 0.1 A/ μ S			10000	μι
Load Transient Deviation	V _{ODV}	C _{OUT} = 12 x10 µF 10 V X7R		75		mV
		$I_{OUT} = 25\% \text{ step } 0.1 \text{ A/µS}$				
Load Transient Recovery Time	+	C _{OUT} = 12 x10 µF 10 V X7R		120		II.C
Load Transfert Necovery Time	t _{OVR}	V _{OUT} - 1%		120		μs
Maximum Output Power	Pout	V _{OUT} - 1%		60		W
	. 001	I				
		Absolute Maximum Output Ratings				
Name		Rating				
+OUT to -OUT		-0.5 V to 4.5 Vdc				
Continuous Output Current		18 Adc				
Peak Output Current		34 Adc				

^[1] These parameters are not production tested but are guaranteed by design, characterization and correlation with statistical process control. Unless otherwise specified, ATE tests are completed at room temperature.

 $[\]ensuremath{^{\text{[2]}}}$ Current flow sourced by a pin has a negative sign.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
		ENABLE				
DC Voltage Reference Output	V _{ERO}	LIVIOLE	4.65	4.9	5.15	Vdc
Output Current Limit ⁽²⁾	I _{ECL}	ENABLE = 3.3 V	-3.3	-2.6	-1.9	mAdc
Start Up Current Limit ⁽²⁾	I _{ESL}	ENABLE = 1 V	-120	-90	-60	μA
Module Enable Voltage	V _{EME}		1.95	2.5	3.05	Vdc
Module Disable Voltage	V _{EMD}		1.8	2.35	2.9	Vdc
Disable Hysteresis	V _{EDH}			150		mV
Enable Delay Time	t _{EE}			10		μs
Disable Delay Time	t _{ED}			10		μs
Maximum Capacitance	C _{EC}				1500	pF
Maximum External Toggle Rate	f _{EXT}				1	Hz
		TRIM/SS				
Trim Voltage Reference	V _{REF}			1.22		Vdc
Internal Capacitance	C _{REFI}			10		nF
External Capacitance	C _{REF}				1	μF
Internal Resistance	R _{REFI}			10		kohms
		TM (Temperature Monitor)				
Temperature Coefficient ^[1]	TM_TC	<u> </u>		10		mV/°K
Temperature Full Range Accuracy ^[1]	TM _{ACC}		-5		5	°K
Drive Capability	I _{TM}		-100			μΑ
TM Output Setting	V_{TM}	Ambient Temperature = 300°K		3.00		V
lus stine Tenere enstrue Christianus [1]	_	Thermal Specification	120	125	1.40	°C
Junction Temperature Shutdown ^[1]	T _{MAX}		130	135	140	°CW
Junction-to-Case Thermal Impedance Case-to-Ambient Thermal Impedance	RΘ _{J-C}	Mounted on 9 in ² 1oz. Cu 6 layer PCB 25°C		8.65		°C/W
Case-to-Ambient Thermal Impedance	$R\Theta_{C-A}$	Mounted on 9 In ² Toz. Cu 6 layer PCB 25°C		8.65		°C/VV
		Regulatory Specification				
IEC 60950-1:2005 (2nd Edition),						
EN 60950-1:2006						
IEC 61000-4-2						
UL 60950-1:2007						
CAN/CSA C22.2 NO. 60950-1-07						
Recommended Input Fuse Rating	I _{FUSE}	Fast acting LITTLEFUSE Nano ² Series Fuse	4		10	А

^[1] These parameters are not production tested but are guaranteed by design, characterization and correlation with statistical process control. Unless otherwise specified, ATE tests are completed at room temperature.

^[2] Current flow sourced by a pin has a negative sign.

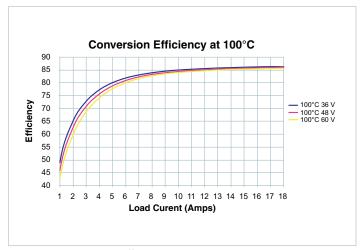


Figure 1 — Conversion Efficiency

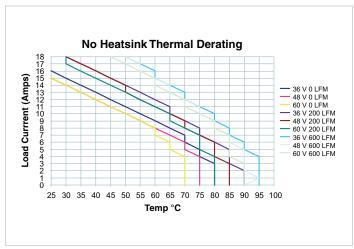


Figure 2 — Load Currrent vs Temperature (without Heat Sink)

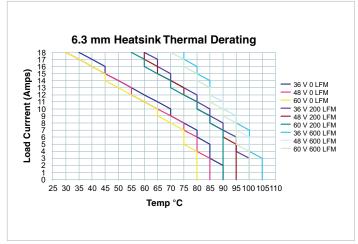
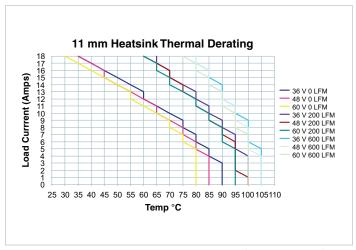



Figure 3 — Load Currrent vs Temperature (6.3mm Heat Sink)

Figure 4 — Load Currrent vs Ambient Temperature (11mm Heat Sink)

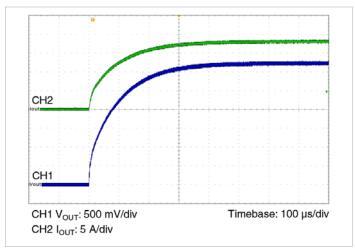


Figure 5 — Start Up $C_{REF} = 0$ $(V_{IN} = 36 \text{ V, } I_{OUT} = 18 \text{ A, } CR, \ C_{OUT} = 12 \text{ X } 10 \text{ µF X7R Ceramic})$

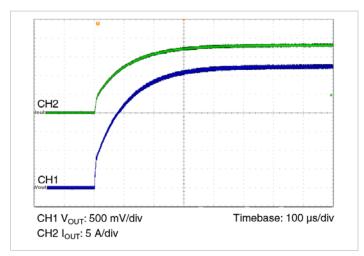


Figure 6 — Start Up $C_{REF} = 0$ ($V_{IN} = 48 \text{ V, } I_{OUT} = 18 \text{ A, CR, } C_{OUT} = 12 \text{ X } 10 \text{ } \mu\text{F X7R Ceramic}$)

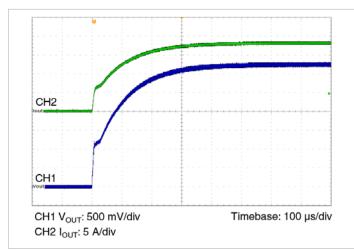
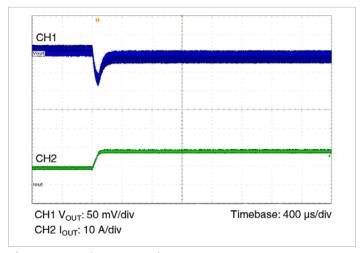
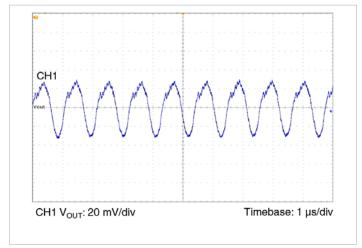




Figure 7 — Start Up $C_{REF} = 0$ $(V_{IN} = 75 \text{ V}, I_{OUT} = 18 \text{ A}, CR, C_{OUT} = 12 \text{ X} 10 \mu\text{F} \text{X7R Ceramic})$

Figure 8 — Transient Response (V_{IN} = 48 V, I_{OUT} = 9 - 18 A, 0.1 A/µs, C_{OUT} = 12 X 10 µF X7R Ceramic)

Figure 9 — Output Ripple $(V_{IN} = 48 \text{ V, } I_{OUT} = 18 \text{ A, CR, } C_{OUT} = 12 \text{ X } 10 \text{ } \mu\text{F X7R Ceramic})$

Figure 10 — Thermal Image $(V_{IN} = 48 \text{ V, } I_{OUT} = 18 \text{ A, CR, 0 LFM Evaluation PCB})$

Unless otherwise specified: 36 V < V_{IN} < 75 V, 0 A < I_{OUT} < 5 A, -40°C $\,$ < T_{CASE} < 100°C⁽¹⁾

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
		Input Specifications				
Input Voltage Range	V _{IN}	input specimentons	36	48	75	Vdc
Input dv/dt (1)	V _{INDVDT}	$V_{IN} = 75 \text{ V}$			1.0	V/µs
Input Under-Voltage Turn-on	V _{UVON}	I _O = 5 A	32.5	34.0	35.0	Vdc
Input Under-Voltage Turn-off	V _{UVOFF}	I _O = 5 A	30.5	31.5	33	Vdc
Input Under-Voltage Hysteresis	V _{UVH}	I _O = 5 A		2.5		Vdc
Input Over-Voltage Turn-on	V _{OVON}	I _O = 5 A	75.7	78	81.0	Vdc
Input Over-Voltage Turn-off	V _{OVOFF}	I _O = 5 A	77.7	80	82.3	Vdc
Input Over-Voltage Hysteresis	V _{OVH}	I _O = 5 A		2		Vdc
Input Quiescent Current	Io	$V_{IN} = 48 \text{ V}, \text{ ENABLE} = 0 \text{ V}$		2.5		mAdc
Input Idling Power	P _{IDLE}	$V_{IN} = 48 \text{ V}, I_{OUT} = 0 \text{ A}$		4.1		W
Input Standby Power	P _{SBY}	$V_{IN} = 48 \text{ V}, \text{ ENABLE} = 0 \text{ V}$		0.120		W
Input Current Full Load	I _{IN}	$T_{CASE} = 100^{\circ}C$ $I_{OUT} = 5$ A $\eta_{FL} = 88.5\%$ typical $V_{IN} = 48$ V		1.412		Adc
		$L_{IN} = 2 \mu H C_{IN} = 47 \mu F 100 V$ electrolytic				
Input Reflected Ripple Current	INRR	+ 2 x 1 μF 100 V X7R ceramic		10		mApp
Recommended Ext Input	-	$C_{IN} = 47 \mu F 100 \text{ V}$ electrolytic + 2 x 1 $\mu F 100 \text{ V}$ X7R ceramic				
Capacitance	C _{IN}	$C_{IN} = Cbulk + Chf$		49		μF
	1		ı			1
		Output Specifications				
Output Voltage Set Point	V _{OUT}	$I_{OUT} = 2.5 A$		12.0		Vdc
otal Output Accuracy V _{OA}	0°C <t<sub>CASE < 100°C</t<sub>	-3		+3	%	
	VOA	-40°C <t<sub>CASE < 0°C</t<sub>	-4		+3	%
Output Voltage Trim Range	V _{OADJ}		-20%		10%	%
Output Current Range	I _{OUT}				5	Adc
Over Current Protection	I _{OCP}		5.5	7.9	10	Adc
Efficiency – Full Load	$\eta_{ t FL}$	$T_{CASE} = 100^{\circ}C$, $V_{IN} = 48 \text{ V}$	86.5	88.5		%
Efficiency – Half Load	η _{HL}	$T_{CASE} = 100^{\circ}C, V_{IN} = 48 \text{ V}$	84.0	86.0		%
Output OVP Set Point	V _{OVP}		13.8	14.5	15.3	Vdc
Output Ripple Voltage	V _{ORPP}	$C_{OUT} = 6 \times 4.7 \mu F 16 V X7R DC-20 MHz$		175		mVpp
Switching Frequency	f _{SW}			900		kHz
Output Turn-on Delay Time	t _{ONDLY}	$V_{IN} = V_{UVON}$ to ENABLE = 5 V		80		ms
Output Turn-off Delay Time	t _{OFFDLY}	$V_{IN} = V_{UVOFF}$ to ENABLE < 1.8 V		10		μs
Soft-Start Ramp Time	t _{SS}	ENABLE = 5 V to 90% V _{OUT} C _{REF} = 0		230		μs
Maximum Load Capacitance	C _{OUT}	$C_{REF} = 0.22 \mu F$, $C_{OUT} = Al$ Electrolytic			1200	μF
Load Transient Deviation	V _{ODV}	$I_{OUT} = 50\%$ step 0.1 A/ μ S		220		mV
	1000	$C_{OUT} = 6 \times 4.7 \mu\text{F} 16 \text{V} \text{X7R}$				
		$I_{OUT} = 50\%$ step 0.1 A/ μ S				
Load Transient Recovery Time	t _{OVR}	$C_{OUT} = 6 \times 4.7 \mu\text{F} 16 \text{V} \text{X7R}$		120		μs
		V _{OUT} - 1%				
Maximum Output Power	P _{OUT}			60		W
		Absolute Maximum Output Ratings				
Name		Rating				
+OUT to -OUT		-0.5 V to 16 Vdc				
Continuous Output Current		5 Adc				
Peak Output Current		10 Adc				

^[1] These parameters are not production tested but are guaranteed by design, characterization and correlation with statistical process control. Unless otherwise specified, ATE tests are completed at room temperature.

^[2] Current flow sourced by a pin has a negative sign.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
		ENABLE				
DC Voltage Reference Output	V _{ERO}	ENABLE	4.65	4.9	5.15	Vdc
Output Current Limit ⁽²⁾	I _{FCI}	ENABLE = 3.3 V	-3.3	-2.6	-1.9	mAdc
Start Up Current Limit ⁽²⁾	I _{ESI}	ENABLE = 1 V	-120	-90	-60	μA
Module Enable Voltage	V _{EME}		1.95	2.5	3.05	Vdc
Module Disable Voltage	V _{EMD}		1.8	2.35	2.9	Vdc
Disable Hysteresis	V _{EDH}			150		mV
Enable Delay Time	t _{EE}			10		μs
Disable Delay Time	t _{ED}			10		μs
Maximum Capacitance	C _{EC}				1500	pF
Maximum External Toggle Rate	f _{EXT}				1	Hz
		TRIM/SS				
Trim Voltage Reference	V_{REF}			1.235		Vdc
Internal Capacitance	C_REFI			10		nF
External Capacitance	C_REF				0.22	μF
Internal Resistance	R _{REFI}			10		kohms
		TM (Temperature Monitor)				
Temperature Coefficient ^[1]	TM_TC	Tim (temperature Monitor)		10		mV/°K
Temperature Full Range Accuracy ^[1]	TM _{ACC}		-5	10	5	°K
Drive Capability	I _{TM}		-100			μA
TM Output Setting	V _{TM}	Ambient Temperature = 300°K	100	3.00		V
2 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- 1101		l l			
		Thermal Specification				
Junction Temperature Shutdown ^[1]	T _{MAX}		130	135	140	°C
Junction-to-Case Thermal Impedance	$R\Theta_{J-C}$			3		°C/W
Case-to-Ambient Thermal Impedance	RΘ _{C-A}	Mounted on 9 in ² 1oz. Cu 6 layer PCB 25°C		7.65		°C/W
		Regulatory Specification				
IEC 60950-1:2005 (2nd Edition),						
EN 60950-1:2006						
IEC 61000-4-2						
UL 60950-1:2007						
CAN/CSA C22.2 NO. 60950-1-07						
Recommended Input Fuse Rating	I _{FUSE}	Fast acting LITTLEFUSE Nano ² Series Fuse	4		10	А

^[1] These parameters are not production tested but are guaranteed by design, characterization and correlation with statistical process control. Unless otherwise specified, ATE tests are completed at room temperature.

 $[\]ensuremath{^{\text{[2]}}}$ Current flow sourced by a pin has a negative sign.

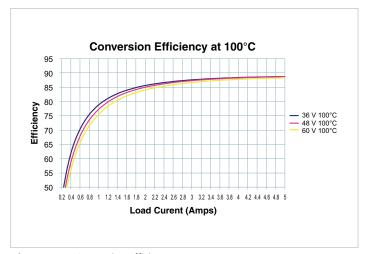
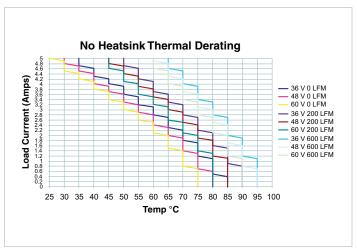



Figure 11 — Conversion Efficiency

Figure 12 — Load Currrent vs Temperature (without Heat Sink)

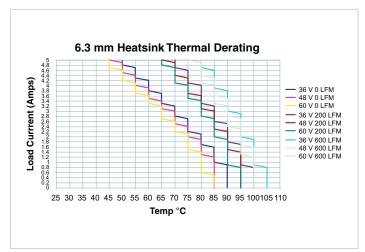


Figure 13 — Load Currrent vs Temperature (6.3mm Heat Sink)

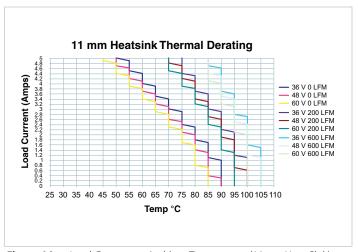


Figure 14 — Load Currrent vs Ambient Temperature (11mm Heat Sink)

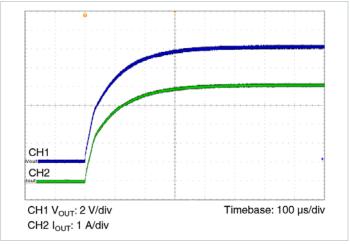
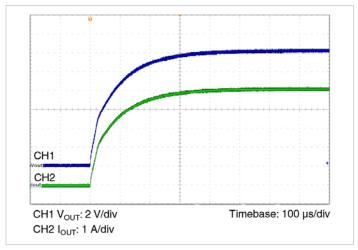



Figure 15 — Start Up $C_{REF} = 0$ $(V_{IN} = 36 \text{ V, } I_{OUT} = 5 \text{ A, } CR, C_{OUT} = 6 \text{ X } 4.7 \text{ µF X7R Ceramic})$

Figure 16 — Start Up $C_{REF} = 0$ ($V_{IN} = 48 \text{ V}, I_{OUT} = 5 \text{ A}, CR, C_{OUT} = 6 \text{ X} 4.7 \mu F X7R Ceramic)$

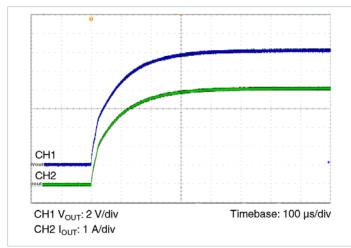
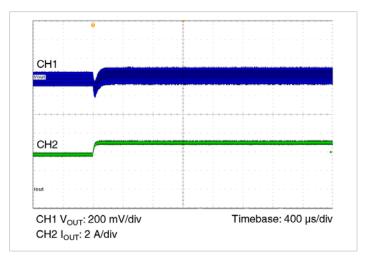




Figure 17 — Start Up $C_{REF} = 0$ $(V_{IN} = 75 \text{ V, } I_{OUT} = 5 \text{ A, CR, } C_{OUT} = 6 \text{ X 4.7 } \mu\text{F X7R Ceramic})$

Figure 18— Transient Response (V_{IN} = 48 V, I_{OUT} = 3.75 - 5 A, 0.1 A/ μ s, C_{OUT} = 6 X 4.7 μ F X7R Ceramic)

Figure 19 — Output Ripple $(V_{IN} = 48 \text{ V, } I_{OUT} = 5 \text{ A, CR, } C_{OUT} = 6 \text{ X 4.7 } \mu\text{F X7R Ceramic})$

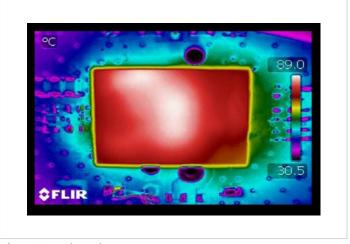


Figure 20 — Thermal Image $(V_{IN} = 48 \text{ V, } I_{OUT} = 5 \text{ A, CR, 0 LFM Evaluation PCB})$

Unless otherwise specified: 41 V < V_{IN} < 57 V, 0 A < I_{OUT} < 3.3 A, -0°C $\,$ < T_{CASE} < 100°C⁽¹⁾

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
		Input Specifications				
Input Voltage Range	V _{IN}	input specifications	41	52	57	Vdc
Input dv/dt (1)	V _{INDVDT}	V _{IN} = 57 V	71	32	1.0	Vuc V/µs
Input Under-Voltage Turn-on	VINDVDI	I _O = 3.3 A	37.1	38.6	40.2	Vdc
Input Under-Voltage Turn-off	VUVON	I ₀ = 3.3 A	34.5	36.2	38	Vdc
Input Under-Voltage Hysteresis	VUVOFF	I ₀ = 3.3 A	54.5	2.4	50	Vdc
Input Over-Voltage Turn-on		I _O = 3.3 A	57.5	60	62.5	Vdc
Input Over-Voltage Turn-off	V _{OVOFF}	I ₀ = 3.3 A	59	61.3	63.5	Vdc
Input Over-Voltage Hysteresis		I ₀ = 3.3 A	23	1.3	03.3	Vdc
Input Quiescent Current	V _{OVH}	$V_{IN} = 5.3 \text{ A}$ $V_{IN} = 52 \text{ V}, \text{ ENABLE} = 0 \text{ V}$		2.5		mAdc
Input Idling Power	I _Q	**		3.3		W
	P _{IDLE}	$V_{IN} = 52 \text{ V}, I_{OUT} = 0 \text{ A}$ $V_{IN} = 52 \text{ V}, ENABLE = 0 \text{ V}$		0.130		W
Input Standby Power	P _{SBY}					
Input Current Full Load	I _{IN}	$T_{CASE} = 100^{\circ}C$ $I_{OUT} = 3.3$ A $\eta_{FL} = 89\%$ typical $V_{IN} = 52$ V		1.28		Adc
Input Reflected Ripple Current	I _{INRR}	$L_{IN} = 2 \mu H C_{IN} = 47 \mu F 100 V$ electrolytic + 2 x 1 μF 100 V X7R ceramic		20		mApp
Recommended Ext Input	C _{IN}	$C_{IN} = 47 \mu F 100 V$ electrolytic + 2 x 1 $\mu F 100 V$ X7R ceramic		49		μF
Capacitance	- CIIV	$C_{IN} = Cbulk + Chf$		43		μι
		2				
Output Valtage Set Beint	V _{OUT}	Output Specifications		18		Vdc
Output Voltage Set Point		I _{OUT} = 1.65 A	-3	10	+3	%
Total Output Accuracy Output Voltage Trim Range	V _{OA}	-0°C <t<sub>CASE < 100°C</t<sub>	-10%		10%	%
	V _{OADJ}		-10%		3.3	Adc
Output Current Range Over Current Protection	l _{out}		2.0	5.8	3.3 9	Adc
	I _{OCP}	T 100%C V 52 V	3.8		9	
Efficiency – Full Load	η _{FL}	T _{CASE} = 100°C, V _{IN} = 52 V	87.0	89.0		%
Efficiency – Half Load	η _{HL}	$T_{CASE} = 100^{\circ}C, V_{IN} = 52 \text{ V}$	84.0	86.0	22.2	%
Output OVP Set Point	V _{OVP}	C	21.7	22.5	23.3	Vdc
Output Ripple Voltage	V _{ORPP}	C _{OUT} = 6 x 2.2 μF 25 V X7R DC-20 MHz		275		mVpp
Switching Frequency	f _{SW}	W. W. INFINANCE EV		900		kHz
Output Turn-on Delay Time	t _{ONDLY}	$V_{IN} = V_{UVON}$ to ENABLE = 5 V		80		ms
Output Turn-off Delay Time	t _{OFFDLY}	$V_{IN} = V_{UVOFF}$ to ENABLE < 1.8 V		10		μs
Soft-Start Ramp Time	t _{SS}	ENABLE = 5 V to 90% $V_{OUT} C_{REF} = 0$		230	220	μs
Maximum Load Capacitance	C _{OUT}	$C_{REF} = 0.68 \mu F$, $C_{OUT} = Al$ Electrolytic			220	μF
Load Transient Deviation	V _{ODV}	$I_{OUT} = 50\%$ step 0.1 A/ μ S		360		mV
		$C_{OUT} = 6 \times 2.2 \ \mu F \ 25 \ V \ X7R$				
		$I_{OUT} = 50\%$ step 0.1 A/ μ S				
Load Transient Recovery Time	t _{OVR}	C _{OUT} = 6 x 2.2 μF 25 V X7R		100		μs
Marian of Carlot Day		V _{OUT} - 1%				14/
Maximum Output Power	P _{OUT}			60		W
		Absolute Maximum Output Ratings				
Name		Rating				
+OUT to -OUT		-0.5 V to 24.5 Vdc				
Continuous Output Current		4.2 Adc				
Peak Output Current		12 Adc				

^[1] These parameters are not production tested but are guaranteed by design, characterization and correlation with statistical process control. Unless otherwise specified, ATE tests are completed at room temperature.

Rev 1.2

02/2015

^[2] Current flow sourced by a pin has a negative sign.

Symbol	Conditions	Min	Тур	Max	Unit
	FALADIT				
\/ssc	ENABLE	4.65	10	5 15	Vdc
	ENABLE - 3.3 V				mAdc
					μА
	LIVABLE - I V				Vdc
					Vdc
		1.0		2.3	mV
					μs
			10	1500	μs
					pF
T _{EXT}				Į į	Hz
	TRIM/SS				
Vprr	TIMIN 33		1 23		Vdc
					nF
			10	0.68	μF
			10	0.00	kohms
TARETI			10		KOTITIS
	TM (Temperature Monitor)				
TM_TC			10		mV/°K
TM _{ACC}		-5		5	°K
I _{TM}		-100			μΑ
V_{TM}	Ambient Temperature = 300°K		3.00		V
	Thermal Specification				
		130		140	°C
	_		_		°C/W
$R\Theta_{C-A}$	Mounted on 9 in ² 1oz. Cu 6 layer PCB 25°C		10.6		°C/W
	Dogulatom Cassification				
	negulatory specification				
I _{FUSE}					Α
	Vero IECL IESL VEME VEMD VEDH TEE TED CEC FEXT VREF CREFI CREFI TMTC TMACC ITM VTM TMAX RØJ-C RØC-A	ENABLE	Second	Second 1.65 1.95 1.20 1.90 1.80 1.80 1.95	Verico 4.65 4.9 5.15 IECL ENABLE = 3.3 V -3.3 -2.6 -1.9 Iest ENABLE = 1 V -120 -90 -60 Verico 1.95 2.5 3.05 Verico 1.8 2.35 2.9 Verico 150 150 Tet 10 10 TRIM/SS 1.23 Cree 150 10 Cree 1500 Fext 10 10 TRIM/SS 1.23 Cree 10 10 Cree 10 10 Cree 1500 TM (Temperature Monitor) TM (Temperature Monitor) TM (Temperature Monitor) TM (Temperature Monitor) 10 TM (Temperature Monitor

^[1] These parameters are not production tested but are guaranteed by design, characterization and correlation with statistical process control. Unless otherwise specified, ATE tests are completed at room temperature.

^[2] Current flow sourced by a pin has a negative sign.

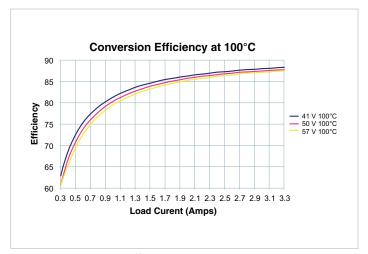
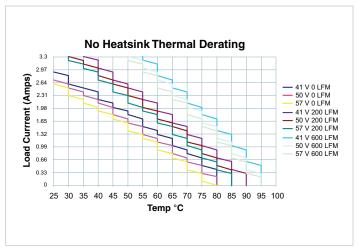



Figure 21 — Conversion Efficiency

Figure 22 — Load Currrent vs Temperature (without Heat Sink)

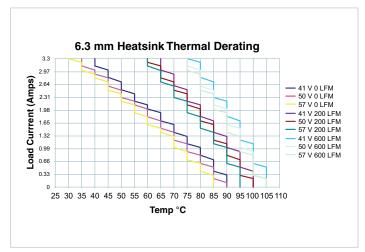
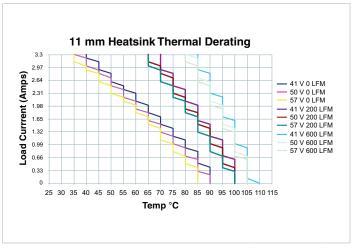



Figure 23 — Load Currrent vs Temperature (6.3mm Heat Sink)

Figure 24 — Load Currrent vs Ambient Temperature (11mm Heat Sink)

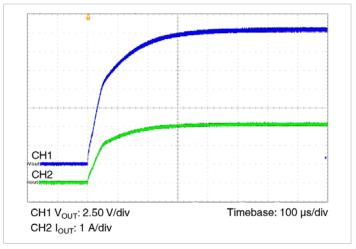
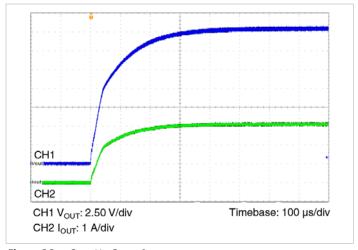
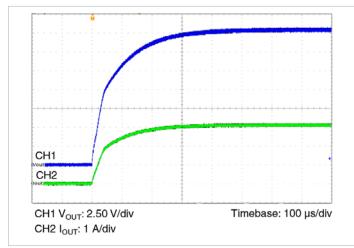




Figure 25 — Start Up $C_{REF} = 0$ $(V_{IN} = 41 \text{ V, } I_{OUT} = 3.3 \text{ A, } CR, C_{OUT} = 6 \text{ X } 2.2 \text{ µF X7R Ceramic})$

Figure 26 — Start Up $C_{REF} = 0$ ($V_{IN} = 52 \text{ V, } I_{OUT} = 3.3 \text{ A, CR, } C_{OUT} = 6 \text{ X } 2.2 \text{ } \mu\text{F X7R Ceramic}$)

Figure 27 — Start Up $C_{REF} = 0$ $(V_{IN} = 52 \text{ V, } I_{OUT} = 3.3 \text{ A, CR, } C_{OUT} = 6 \text{ X } 2.2 \text{ µF X7R Ceramic})$

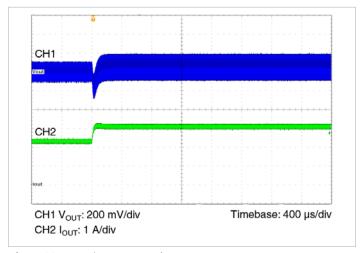


Figure 28— Transient Response ($V_{IN} = 52 \text{ V, } I_{OUT} = 2.475 - 3.3 \text{ A,} 0.1 \text{ A/µs, } C_{OUT} = 6 \text{ X } 2.2 \text{ µF X7R Ceramic}$

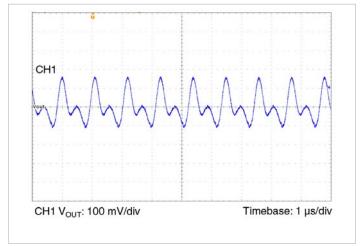


Figure 29 — Output Ripple $(V_{IN} = 52 \text{ V, } I_{OUT} = 3.3 \text{ A, CR, } C_{OUT} = 6 \text{ X } 2.2 \text{ } \mu\text{F X7R Ceramic})$

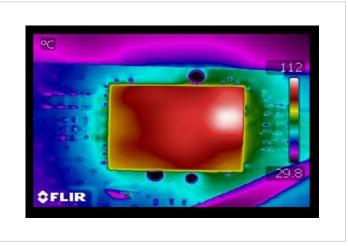


Figure 30 — Thermal Image $(V_{IN} = 52 \text{ V, } I_{OUT} = 3.3 \text{ A, CR, 0 LFM Evaluation PCB})$

Functional Description

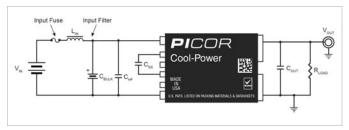


Figure 31 — Picor 48 Volt Pl31xx Shown With System Fuse, Filter, Decoupling And Extended Soft Start

Input Power Pins IN(+) and IN(-)

The input power pins on the 48 Volt PI31xx are connected to the input power source which can range from 36 V to 75 V DC. (PI3110-01-HVIZ 41 V TO 57 V) Under surge conditions, the 48 Volt PI31xx can withstand up to 100 V DC. (PI3110-01-HVIZ 80 V) for 100 ms without incurring damage. The user should take care to avoid driving the input rails above the specified ratings. Since the 48 Volt PI31xx is designed with high reliability in mind, the input pins are continuously monitored. If the applied voltage exceeds the input over-voltage trip point the conversion process shall be terminated immediately. The converter initiates soft-start automatically within 80ms after the input voltage is reduced back to the appropriate value. The input pins do not have reverse polarity protection. If the 48 Volt PI31xx is operated in an environment where reverse polarity is a concern, the user should consider using a polarity protection device such as a suitably rated diode. To avoid the high losses of using a diode, the user should consider the much higher efficiency Picor family of intelligent Cool-ORing® solutions that can be used in reverse polarity applications. Information is available at picorpower.com.

The 48 Volt PI31xx will draw nearly zero current until the input voltage reaches the internal start up threshold. If the ENABLE pin is not pulled low by external circuitry, the output voltage will begin rising to its final output value about 80ms after the input UV lockout releases. This will occur automatically even if the ENABLE pin is floating.

To help keep the source impedance low, the input to the 48 Volt PI31xx should be bypassed with (2) 1.0 uF 100 V ceramic capacitors of X7R dielectric in parallel with a low Q 47 uF 100 V electrolytic capacitor. To reduce EMI and reflected ripple current, a series inductor of 0.2 to 0.47 uH can be added. The input traces to the module should be low impedance configured in such a manner as to keep stray inductance minimized.

ENABLE

The ENABLE pin serves as a multi-function pin for the 48 Volt PI31xx. During normal operation, it outputs the on-board 4.9 V regulator which can be used for trimming the module up. The ENABLE pin can also be used as a remote enable pin either from the secondary via an optocoupler and some external isolated bias supply or from the primary side through a small signal transistor, FET or any device that sinks 3.3 mA, minimum. If the ENABLE pin is lower than 2.35 V typical, the converter will be held off or shut down if already operating. A third feature is offered in that during a fault condition such as output OVP, input UV or OV, or output current limit, the ENABLE pin is pulled low internally. This can be used as a signal to the user that a fault has occurred. Whenever the ENABLE pin is pulled low, the TRIM/SS pin follows, resetting the internal and

external soft-start circuitry. All faults will pull ENABLE low including over temperature. If increased turn on delay is desired, the ENABLE pin can be bypassed with a small capacitor up to a maximum of 1500 pF.

TRIM/SS Pin

The TRIM/SS pin serves as another multi-purpose pin. First, it is used as the reference for the internal error amplifier. Connecting a resistor from TRIM/SS to SGND allows the reference to be margined down by as much as -20%. Connecting a resistor from TRIM/SS to ENABLE will allow the reference and output voltage to be margined up by 10%. If the user wishes a longer start up time, a small ceramic capacitor can be added to TRIM/SS to increase it. It is critical to connect any device between TRIM/SS and SGND and not -IN, otherwise high frequency noise will be introduced to the reference and possibly cause erratic operation. Referring to the figures below, the appropriate trim up or trim down resistor can be calculated using the equivalent circuit diagram and the equations. When trimming up the trim down resistor is not populated and when trimming down, the trim up resistor is not populated. The soft start time is adjustable within the limits defined by the data tables and has a default value of 500us to reach steady state. The internal soft start capacitor value is 10nF.

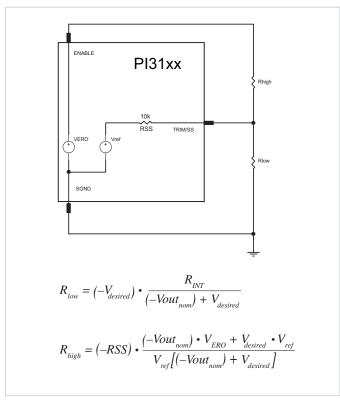


Figure 32 — Trim Equations And Equivalent Circuit

$$C_{REF} = \frac{T_{ssdesired} - 230 \cdot 10^{-6}}{23000}$$

TM

The TM pin serves as an output indicator of the internal package temperature which is within +/- 5°K of the hottest junction temperature. Because of this, it is a good indicator of a thermal overload condition. The output is a scaled, buffered analog voltage which indicates the internal temperature in degrees Kelvin. Upon a thermal overload, the TM pin is pulled low, indicating a thermal fault has occurred. Upon restart of the converter, the TM pin reverts back to a buffered monitor. The thermal shutdown function of the 48 Volt PI31xx is a fault feature which interrupts power processing if a certain maximum temperature is exceeded. TM can be monitored by an external microcontroller or circuit configured as an adaptive fan speed controller so that air flow in the system can be conveniently regulated.

SGND

The 48 Volt PI31xx SGND pin is the "quiet" control circuitry return. It is basically an extension of the internal signal ground. To avoid contamination and potential ground loops, this ground should NOT be connected to -IN since it is already star connected inside the package. Connect signal logic to SGND.

Output Power Pins +OUT And -OUT

The output power terminals OUT(+) and OUT(-) deliver the maximum output current from the 48 Volt PI31xx through the J-lead output pins. This configuration allows for a low impedance output and should be connected to multi-layer PCB parallel planes for best performance. Due to the high switching frequency, output ripple and noise can be easily attenuated by adding just a few high quality X7R ceramic capacitors while retaining adequate transient response for most applications. The 48 Volt PI31xx does not require any feedback loop compensation nor does it require any optoisolation. All isolation is contained within the package. This greatly simplifies the use of the converter and eliminates all outside influences of noise on the quality of the output voltage regulation and feedback loop. It is important for the user to minimize resistive connections from the load to the converter output and to keep stray inductance to a minimum for best regulation and transient response. The very small size footprint and height of the 48 Volt PI31xx allows the converter to be placed in the optimum location to allow for tight connections to the point of load. For those applications absolutely requiring very tight regulation, contact Picor Engineering at picorpower.com for a remote sense application circuit which can be used.

Package Outline & Recommended PCB Land Pattern

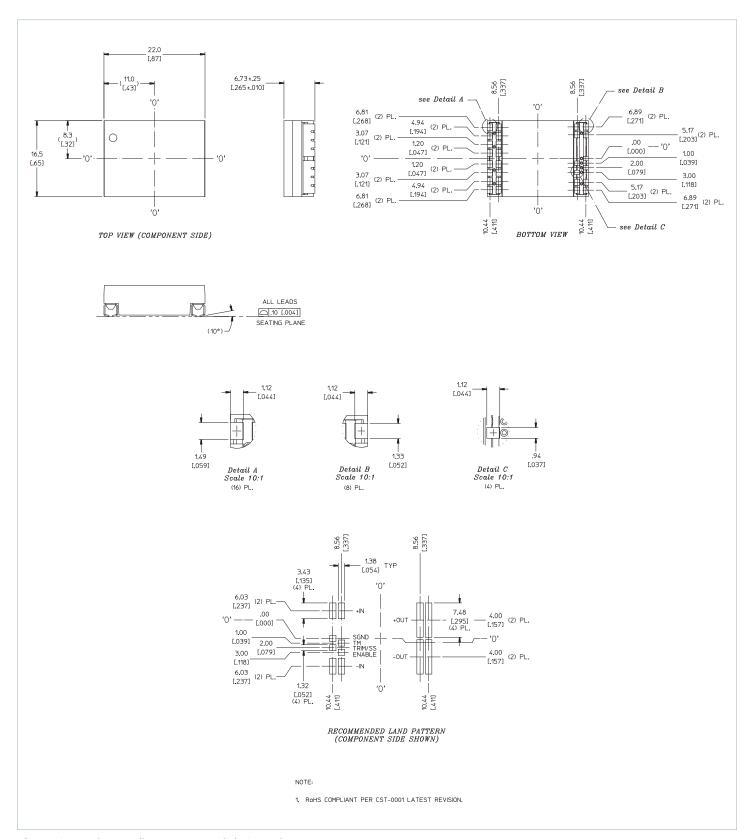


Figure 33 — Package Outline & Recommended PCB Land Pattern

Vicor's comprehensive line of power solutions includes high density AC-DC and DC-DC modules and accessory components, fully configurable AC-DC and DC-DC power supplies, and complete custom power systems.

Information furnished by Vicor is believed to be accurate and reliable. However, no responsibility is assumed by Vicor for its use. Vicor makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication. Vicor reserves the right to make changes to any products, specifications, and product descriptions at any time without notice. Information published by Vicor has been checked and is believed to be accurate at the time it was printed; however, Vicor assumes no responsibility for inaccuracies. Testing and other quality controls are used to the extent Vicor deems necessary to support Vicor's product warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Specifications are subject to change without notice.

Vicor's Standard Terms and Conditions

All sales are subject to Vicor's Standard Terms and Conditions of Sale, which are available on Vicor's webpage or upon request.

Product Warranty

In Vicor's standard terms and conditions of sale, Vicor warrants that its products are free from non-conformity to its Standard Specifications (the "Express Limited Warranty"). This warranty is extended only to the original Buyer for the period expiring two (2) years after the date of shipment and is not transferable.

UNLESS OTHERWISE EXPRESSLY STATED IN A WRITTEN SALES AGREEMENT SIGNED BY A DULY AUTHORIZED VICOR SIGNATORY, VICOR DISCLAIMS ALL REPRESENTATIONS, LIABILITIES, AND WARRANTIES OF ANY KIND (WHETHER ARISING BY IMPLICATION OR BY OPERATION OF LAW) WITH RESPECT TO THE PRODUCTS, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR REPRESENTATIONS AS TO MERCHANTABILITY, FITNESS FOR PARTICULAR PURPOSE, INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT, OR ANY OTHER MATTER.

This warranty does not extend to products subjected to misuse, accident, or improper application, maintenance, or storage. Vicor shall not be liable for collateral or consequential damage. Vicor disclaims any and all liability arising out of the application or use of any product or circuit and assumes no liability for applications assistance or buyer product design. Buyers are responsible for their products and applications using Vicor products and components. Prior to using or distributing any products that include Vicor components, buyers should provide adequate design, testing and operating safeguards.

Vicor will repair or replace defective products in accordance with its own best judgment. For service under this warranty, the buyer must contact Vicor to obtain a Return Material Authorization (RMA) number and shipping instructions. Products returned without prior authorization will be returned to the buyer. The buyer will pay all charges incurred in returning the product to the factory. Vicor will pay all reshipment charges if the product was defective within the terms of this warranty.

Life Support Policy

VICOR'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF VICOR CORPORATION. As used herein, life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness. Per Vicor Terms and Conditions of Sale, the user of Vicor products and components in life support applications assumes all risks of such use and indemnifies Vicor against all liability and damages.

Intellectual Property Notice

Vicor and its subsidiaries own Intellectual Property (including issued U.S. and Foreign Patents and pending patent applications) relating to the products described in this data sheet. No license, whether express, implied, or arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Interested parties should contact Vicor's Intellectual Property Department.

The products described on this data sheet are protected by the following U.S. Patents Numbers: 6,788,033; 7,154,250; 7,561,446; 7,361,844; D496,906; D506,438; 6,940,013; 7,038,917; 6,969,909; 7,166,898; 6,421,262; 7,368,957; RE 40,072

Vicor Corporation 25 Frontage Road Andover, MA 01810 USA Picor Corporation

51 Industrial Drive North Smithfield, RI 02896 USA

email

Customer Service: <u>custserv@vicorpower.com</u> Technical Support: <u>apps@vicorpower.com</u>

