

N-Channel Enhancement Mode Field Effect Transistor

Description

The ACET4445B uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge. This device is suitable for use as a high side switch in SMPS and general purpose applications.

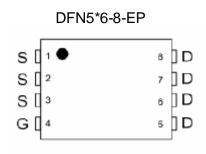
ACET4445B is electrically identical.

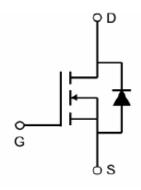
RoHS Compliant

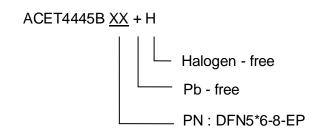
Features

- V_{DS} (V) = 30V
- $I_D = 38A \text{ (VGS} = 10V)$
- $R_{DS(ON)} = 6.2 \text{m}\Omega$ $(V_{GS} = 10 \text{V}, \text{Typ})$
- $R_{DS(ON)} < 8.9 m\Omega$ $(V_{GS} = 4.5 V, Typ)$
- Low Qg
- 100% Delta Vsd Tested
- 100% R_g Tested

Absolute Maximum Ratings


Parameter	Symbol	Max	Unit	
Drain-Source Voltage		V_{DSS}	30	V
Gate-Source Voltage		V_{GSS}	±20	V
Drain Current (Continuous)	T _C =25 °C	ı	38	А
	T _C =100 °C	l _D	18	
Drain Current (Pulse) ^C		I _{DM}	60	
Drain Current (Continuous)	T _A =25 °C	1 .	11	А
	T _A =70 °C	I _{DSM}	8	
Power Dissipation ^B	T _C =25 °C	В	5	۱۸/
	T _C =100 °C	P _D	3.2	W
Power Dissipation ^A	T _A =25 °C	В	2	W
	T _A =70 °C	P _{DSM}	1.3	VV
Operating and Storage Temperature Range		$T_{J,}T_{STG}$	-55 to 150	°C


Thermal Characteristics							
Parameter	Symbol	Max	Units				
Maximum Junction-to-Ambient ^A	t≦10s	Ъ	25	°C/W			
Maximum Junction-to-Ambient AD	Steady-State	$R_{\theta JA}$	60	°C/W			
Maximum Junction-to-Case	Steady-State	$R_{ heta JC}$	4.2	°C/W			


N-Channel Enhancement Mode Field Effect Transistor

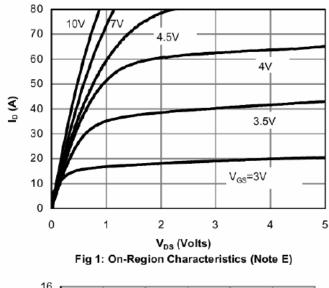
Packaging Type

Ordering information

N-Channel Enhancement Mode Field Effect Transistor

Electrical CharacteristicsT_A=25 °C unless otherwise noted

Parameter	Symbol	Conditions	Min	Тур	Max	Unit			
Static									
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	$V_{GS} = 0V, I_{D} = 250 \mu A$	30			V			
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 30 \text{ V}$, $V_{GS} = 0 \text{V}$			1	μΑ			
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{GS}=V_{DS}$, $I_{DS}=250\mu A$	1		3	V			
Gate Leakage Current	I _{GSS}	$V_{GS}=\pm20V$, $V_{DS}=0V$			100	nA			
Drain-Source On-state Resistance	R _{DS(on)}	$V_{GS} = 10V , I_{D} = 12A$		6.2	8.5	mΩ			
		$V_{GS} = 4.5V , I_{D} = 10A$		8.9	13				
Forward Transconductance	g FS	VDS=10V, ID=12A	30			S			
Diode Forward Voltage	V_{SD}	ISD=2A, VGS=0V		0.71	1.0	V			
Maximum Body-Diode Continuous Current	IS				2	Α			
Switching									
Total Gate Charge	Q_g	V_{DS} =15V, I_{D} =12A V_{GS} =5V		7.5		nC			
Gate-Source Charge	Q_{gs}			1.3					
Gate-Drain Charge	Q_gd	V GS-5 V		4.5					
Turn-On Delay Time	T _{d(on)}	V_{DS} =15V, V_{GS} =10V R_{GEN} =6 Ω , R_L =15 Ω		10					
Turn-On Rise Time	t _f			8		ns			
Turn-Off Delay Time	t _{d(off)}			30					
Turn-Off Fall Time	t _f			5					
Dynamic									
Input Capacitance	C _{iss}	\/ .=15\/ \/ =0\/		680					
Output Capacitance	C _{oss}	V_{DS} =15V, V_{GS} =0V f=1MHz		150		pF			
Reverse Transfer Capacitance	C _{rss}			70					


Note:

- A. The value of $R_{\theta JA}$ is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The Power dissipation P_{DSM} is based on $R_{\theta JA}$ and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design.
- B. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.
- C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C. Ratings are based on low frequency and duty cycles to keep initial T_J =25°C.
- D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to case $R_{\theta JC}$ and case to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.
- F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}=150$ °C. The SOA curve provides a single pulse rating.
- G. The maximum current rating is package limited.
- H. These tests are performed with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^{\circ}\text{C}$

N-Channel Enhancement Mode Field Effect Transistor

Typical Performance Characteristics

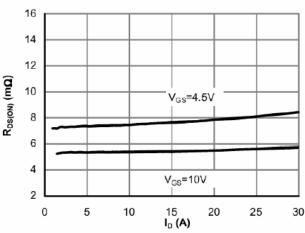


Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

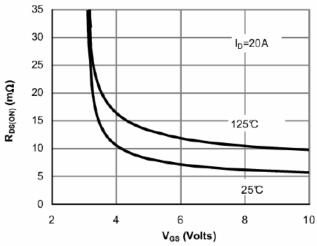


Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

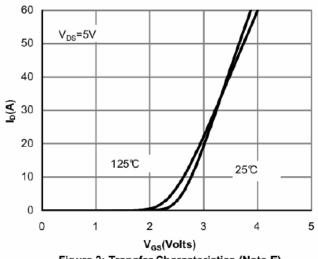


Figure 2: Transfer Characteristics (Note E)

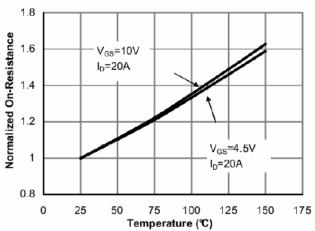


Figure 4: On-Resistance vs. Junction Temperature (Note E)

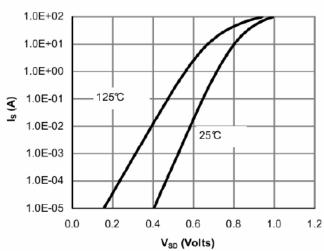
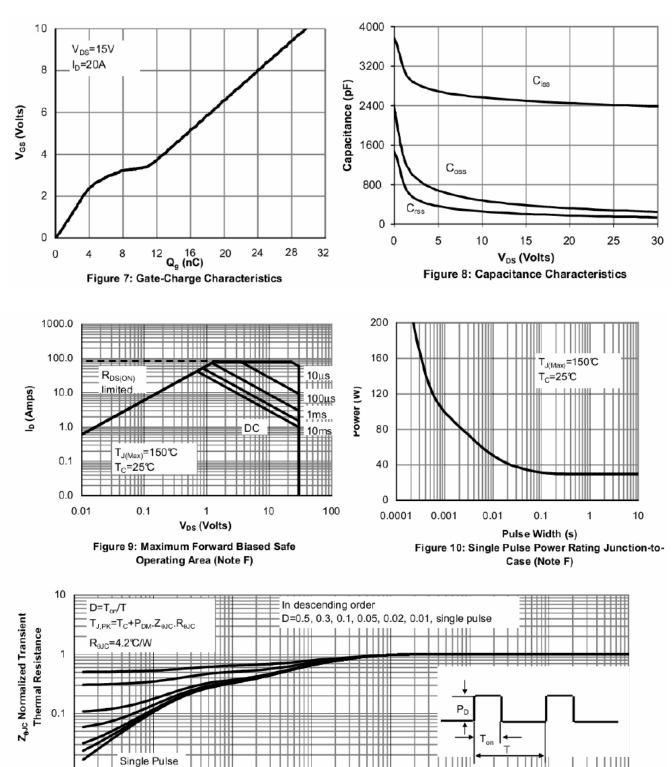


Figure 6: Body-Diode Characteristics (Note E)


0.00001

0.0001

0.001

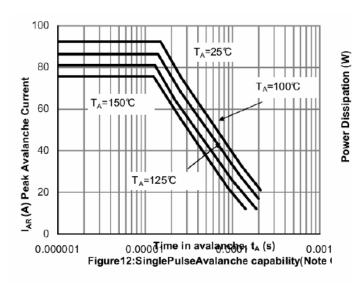
ACET4445B

N-Channel Enhancement Mode Field Effect Transistor

Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

0.1

0.01


5

100

10

N-Channel Enhancement Mode Field Effect Transistor

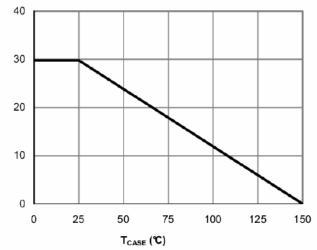
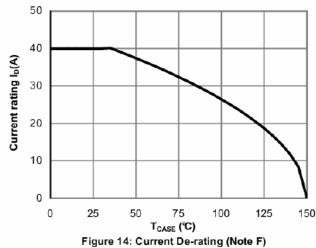



Figure 13: Power De-rating (Note F)

Typical Performance Characteristics

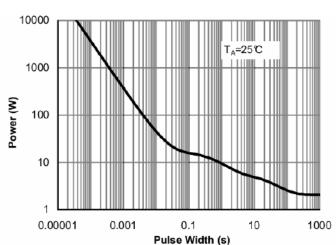


Figure 15: Single Pulse Power Rating Junction-to-Ambient (Note H)

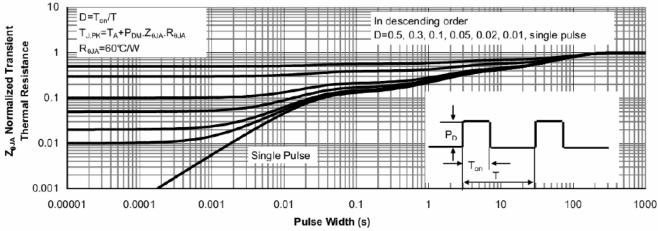
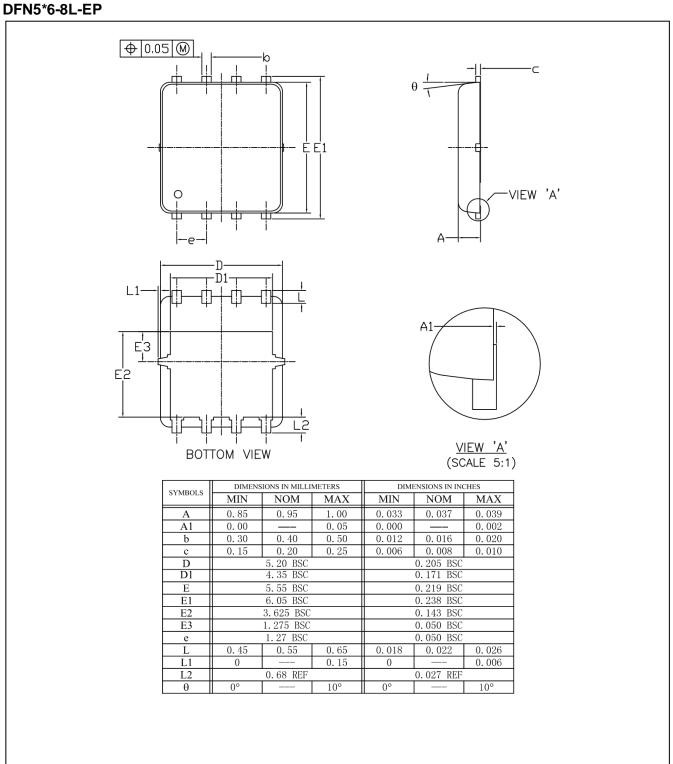



Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)

N-Channel Enhancement Mode Field Effect Transistor

Packing Information

N-Channel Enhancement Mode Field Effect Transistor

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/