Part Number Hot Search : 
022AXA GHYBA PKE024AA 00MTR K4T1G 167BZX BPC3502 ZPSD311
Product Description
Full Text Search
 

To Download AON6440 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  AON6440 40v n-channel mosfet sdmos tm general description product summary v ds 40v i d (at v gs =10v) 85a r ds(on) (at v gs =10v) < 3.4m w r ds(on) (at v gs = 4.5v) < 4.5m w 100% uis tested 100% r g tested symbol v ds v gs i dm i ar e ar t j , t stg symbol t 10s steady-state steady-state r q jc 250 pulsed drain current c continuous drain current g parameter typ max t c =25c 2.3 33 t c =100c junction and storage temperature range -55 to 150 c thermal characteristics units maximum junction-to-ambient a c/w r q ja 14 40 17 v 20 gate-source voltage drain-source voltage 40 the AON6440 is fabricated with sdmos tm trench technology that combines excellent r ds(on) with low gate charge.the result is outstanding efficiency with co ntrolled switching behavior. this universal technology is we ll suited for pwm, load switching and general purpose applications. v maximum units parameter absolute maximum ratings t a =25c unless otherwise noted repetitive avalanche energy l=0.1mh c mj avalanche current c 15 continuous drain current 259 20 a 72 a t a =25c i dsm a t a =70c i d 85 67 t c =25c t c =100c power dissipation b p d w power dissipation a p dsm w t a =70c 83 1.4 t a =25c maximum junction-to-case c/w c/w maximum junction-to-ambient a d 1 55 1.5 g ds top view 1 2 3 4 8 7 6 5 pin1 dfn5x6 top view bottom view rev 1: november 2010 www.aosmd.com page 1 of 7
AON6440 symbol min typ max units bv dss 40 v v ds =40v, v gs =0v 100 t j =55c 500 i gss 100 na v gs(th) gate threshold voltage 1.2 1.7 2.2 v i d(on) 250 a 2.8 3.4 t j =125c 4.6 5.5 3.6 4.5 m w g fs 76 s v sd 0.7 1 v i s 85 a c iss 4000 5000 6000 pf c oss 550 780 1000 pf c rss 180 300 420 pf r g 0.5 1 1.5 w q g (10v) 65 81 97 nc q g (4.5v) 32 40 48 nc q gs 11 14 17 nc q gd 9 15 21 nc t d(on) 13.7 ns t r 4.5 ns t d(off) 54 ns t f 10 ns t rr 13 16 19 ns q rr 30 38 45 nc components in life support devices or systems are n ot authorized. aos does not assume any liability ar ising out of such applications or uses of its products. aos reserves the right to improve product design, functions and reliability without notice. rev 1: nov. 2010 body diode reverse recovery charge i f =20a, di/dt=500a/ m s maximum body-diode continuous current input capacitance output capacitance turn-on delaytime dynamic parameters turn-on rise time turn-off delaytime v gs =10v, v ds =20v, r l =1 w , r gen =3 w gate resistance v gs =0v, v ds =0v, f=1mhz turn-off fall time total gate charge v gs =10v, v ds =20v, i d =20a gate source charge gate drain charge total gate charge m w i s =1a,v gs =0v v ds =5v, i d =20a v gs =4.5v, i d =20a forward transconductance diode forward voltage r ds(on) static drain-source on-resistance i dss m a v ds =v gs i d =250 m a v ds =0v, v gs = 20v zero gate voltage drain current gate-body leakage current electrical characteristics (t j =25c unless otherwise noted) static parameters parameter conditions body diode reverse recovery time drain-source breakdown voltage on state drain current i d =250 m a, v gs =0v v gs =10v, v ds =5v v gs =10v, i d =20a reverse transfer capacitance i f =20a, di/dt=500a/ m s v gs =0v, v ds =20v, f=1mhz switching parameters a. the value of r q ja is measured with the device mounted on 1in 2 fr-4 board with 2oz. copper, in a still air enviro nment with t a =25c. the power dissipation p dsm is based on r q ja and the maximum allowed junction temperature of 15 0c. the value in any given application depends on the user's specific board design, and the maximu m temperature of 150c may be used if the pcb allow s it. b. the power dissipation p d is based on t j(max) =150c, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsi nking is used. c. repetitive rating, pulse width limited by juncti on temperature t j(max) =150c. ratings are based on low frequency and duty cycles to keep initial t j =25c.maximum uis current limited by test equipment . d. the r q ja is the sum of the thermal impedence from junction to case r q jc and case to ambient. e. the static characteristics in figures 1 to 6 are obtained using <300 m s pulses, duty cycle 0.5% max. f. these curves are based on the junction-to-case t hermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of t j(max) =150c. the soa curve provides a single pulse ratin g. g. the maximum current rating is limited by package . h. these tests are performed with the device mounte d on 1 in 2 fr-4 board with 2oz. copper, in a still air enviro nment with t a =25c. rev 0: january 2009 www.aosmd.com page 2 of 7
AON6440 typical electrical and thermal characteristics 17 52 10 0 18 40 0 30 60 90 120 150 0 1 2 3 4 5 6 v gs (volts) figure 2: transfer characteristics (note e) i d (a) 1 2 3 4 5 0 5 10 15 20 25 30 i d (a) figure 3: on-resistance vs. drain current and gate voltage (note e) r ds(on) (m w ww w ) 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 1.0e+00 1.0e+01 1.0e+02 0.0 0.2 0.4 0.6 0.8 1.0 v sd (volts) figure 6: body-diode characteristics (note e) i s (a) 25c 125c 0.8 1 1.2 1.4 1.6 1.8 0 25 50 75 100 125 150 175 temperature (c) figure 4: on-resistance vs. junction temperature (note e) normalized on-resistance v gs =4.5v i d =20a v gs =10v i d =20a 2 3 4 5 6 7 8 9 10 2 4 6 8 10 v gs (volts) figure 5: on-resistance vs. gate-source voltage (note e) r ds(on) (m w ww w ) 25c 125c v ds =5v v gs =4.5v v gs =10v i d =20a 25c 125c 0 30 60 90 120 150 0 1 2 3 4 5 v ds (volts) fig 1: on-region characteristics (note e) i d (a) v gs =3v 4v 7v 10v 3.5v 5v rev 0: january 2009 www.aosmd.com page 3 of 7
AON6440 typical electrical and thermal characteristics 17 52 10 0 18 40 0 2 4 6 8 10 0 20 40 60 80 100 q g (nc) figure 7: gate-charge characteristics v gs (volts) 0 1000 2000 3000 4000 5000 6000 7000 0 5 10 15 20 25 30 35 40 v ds (volts) figure 8: capacitance characteristics capacitance (pf) c iss 0 50 100 150 200 250 300 350 400 0.0001 0.001 0.01 0.1 1 10 pulse width (s) figure 10: single pulse power rating junction-to- case (note f) power (w) 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 10 100 pulse width (s) figure 11: normalized maximum transient thermal imp edance (note f) z q qq q jc normalized transient thermal resistance c oss c rss v ds =20v i d =20a single pulse d=t on /t t j,pk =t c +p dm .z q jc .r q jc t on t p d in descending order d=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse t j(max) =150c t c =25c 10 m s 0.0 0.1 1.0 10.0 100.0 1000.0 0.01 0.1 1 10 100 v ds (volts) i d (amps) figure 9: maximum forward biased safe operating area (note f) 10 m s 1ms dc r ds(on) limited t j(max) =150c t c =25c 100 m s r q jc =1.5c/w rev 0: january 2009 www.aosmd.com page 4 of 7
AON6440 typical electrical and thermal characteristics 17 52 10 0 18 40 0.001 0.01 0.1 1 10 0.0001 0.001 0.01 0.1 1 10 100 1000 pulse width (s) figure 16: normalized maximum transient thermal imp edance (note h) z q qq q ja normalized transient thermal resistance single pulse d=t on /t t j,pk =t a +p dm .z q ja .r q ja t on t p d in descending order d=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 20 50 80 110 140 170 200 230 0.000001 0.00001 0.0001 0.001 time in avalanche, t a (s) figure 12: single pulse avalanche capability (note c) i ar (a) peak avalanche current 0 10 20 30 40 50 60 70 80 90 0 25 50 75 100 125 150 t case (c) figure 13: power de-rating (note f) power dissipation (w) 0 20 40 60 80 100 0 25 50 75 100 125 150 t case (c) figure 14: current de-rating (note f) current rating i d (a) t a =25c 1 10 100 1000 10000 0.0001 0.01 1 100 10000 pulse width (s) figure 15: single pulse power rating junction-to- ambient (note h) power (w) t a =25c t a =150c t a =100c t a =125c r q ja =55c/w rev 0: january 2009 www.aosmd.com page 5 of 7
AON6440 typical electrical and thermal characteristics 0 10 20 30 40 50 60 70 0 5 10 15 20 25 30 i s (a) figure 17: diode reverse recovery charge and peak current vs. conduction current q rr (nc) 4 6 8 10 12 i rm (a) di/dt=800a/ m s 125oc 125oc 25oc 25oc q rr i rm 0 10 20 30 40 50 60 70 0 200 400 600 800 1000 di/dt (a/ m mm m s) figure 19: diode reverse recovery charge and peak current vs. di/dt q rr (nc) 0 3 6 9 12 15 i rm (a) 125oc 125oc 25oc 25oc i s =20a q rr i rm 0 2 4 6 8 10 12 14 16 18 0 5 10 15 20 25 30 i s (a) figure 18: diode reverse recovery time and softness factor vs. conduction current t rr (ns) 0 0.5 1 1.5 2 2.5 s di/dt=800a/ m s 125oc 125oc 25oc 25oc t rr s 0 5 10 15 20 25 0 200 400 600 800 1000 di/dt (a/ m mm m s) figure 20: diode reverse recovery time and softness factor vs. di/dt t rr (ns) 0 0.5 1 1.5 2 2.5 s 125oc 25oc 25oc 125o i s =20a t rr s rev 0: january 2009 www.aosmd.com page 6 of 7
AON6440 - + vdc ig vds dut - + vdc vgs vgs 10v qg qgs qgd charge gate charge test circuit & waveform - + vdc dut vdd vgs vds vgs rl rg vgs vds 10% 90% resistive switching test circuit & waveforms t t r d(on) t on t d(off) t f t off vdd vgs id vgs rg dut - + vdc l vgs vds id vgs bv i unclamped inductive switching (uis) test circuit & waveforms ig vgs - + vdc dut l vds vgs vds isd isd diode recovery test circuit & waveforms vds - vds + i f ar dss 2 e = 1/2 li di/dt i rm rr vdd vdd q = - idt ar ar t rr rev 0: january 2009 www.aosmd.com page 7 of 7


▲Up To Search▲   

 
Price & Availability of AON6440

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X