d i m e n s i o n s a r e i n i n c h e s [ m i l l i m e t e r s ] s p e c i f i c a t i o n s * m a x i m u m r a t i n g s r e v . 7 / 1 0 6 5 0 - 6 9 1 - 9 8 0 0 ? f a x : 6 5 0 - 9 6 2 - 6 8 4 5 ? u p d a t e s : w w w . t e l e d y n e m i c r o w a v e . c o m ? m i c r o w a v e @ t e l e d y n e . c o m a b s o l u t e m a x i m u m r a t i n g s 0 . 1 t o 6 . 0 g h z a n a l o g d e t e c t o r s m - 2 5 f o r d e t e c t o r s d a q 6 1 0 3 d a q 6 1 0 3 d a s 6 1 0 3 s m t o - 8 p a c k a g e f o r d e t e c t o r s t y p i c a l v a l u e s @ + 2 5 c d a q 6 1 0 3 w i d e f r e q u e n c y r a n g e . . . . . . . . . . . . . . . . . . . . . . . . . 0 . 1 t o 8 . 0 g h z w i d e p o w e r r a n g e . . . . . . . . . . . . . . . . . . . . . . . . . . . . C 1 0 . 0 t o + 2 5 . 0 d b m t e m p e r a t u r e s t a b i l i t y . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . 2 5 d b f l a t n e s s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . 5 d b l o w v s w r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 2 : 1 s i n g l e o r d u a l p o w e r s u p p l y c o u g a r q p a c k a g e d c v o l t a g e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8 v c o n t i n u o u s r f i n p u t p o w e r . . . . . . . . . . . . . . . . . . . . . + 2 7 d b m ( 5 v d c ) o p e r a t i n g c a s e t e m p e r a t u r e . . . . . . . . . . . . . . . . . . . . - 5 5 c t o + 1 0 0 c s t o r a g e t e m p e r a t u r e . . . . . . . . . . . . . . . . . . . . . . . . . . . - 6 5 c t o + 1 2 5 c b u r n - i n t e m p e r a t u r e . . . . . . . . . . . . . . . . . . . . . . . . . . . + 1 0 0 c d e t e c t o r t h e r m a l r e s i s t a n c e 1 ( j c ) . . . . . . . . . . . . . . . + 3 5 0 0 c / w a t t t e m p e r a t u r e r i s e @ + 2 0 d b m ( t j c ) . . . . . . . . . . . . . . . + 3 . 5 c 1 t h e r m a l r e s i s t a n c e i s b a s e d o n r f i n p u t p o w e r . r a t i n g s b a s e d o n + 2 5 c . t h i s u n i t i s d c c o u p l e d a n d e m p l o y s a r f c h o k e a t t h e i n p u t ( d c s h o r t ) . i f t h e a p p l i c a t i o n c a l l s f o r t h e i n p u t t o s i n k c u r r e n t t h e r e w i l l a p p r o x i m a t e l y b e a n a d d i t i o n a l 1 m v o f o u t p u t o f f s e t v o l t a g e f o r e a c h 3 m a o f c u r r e n t . s i n k c u r r e n t s h o u l d b e l i m i t e d t o 1 0 0 m a m a x t o a v o i d c h o k e b u r n o u t . f o r h i g h e r s u p p l y v o l t a g e s , u p t o 1 5 v o l t s , t h e p o s i t i v e s u p p l y p i n m u s t i n c l u d e a s e r i e s c u r r e n t l i m i t i n g r e s i s t o r , r s = ( v s C 5 ) / 0 . 0 1 . ( e . g . : v s = 1 5 v , r s = 1 k ) a v e r a g e p o w e r d e t e c t i o n i s o b t a i n e d a t p o w e r l e v e l s b e l o w a p p r o x i m a t e l y + 7 d b m . f o r b e s t p u l s e r e s p o n s e t h e s u p p l y p i n s s h o u l d b e b y p a s s e d w i t h a n a d d i t i o n a l 0 . 1 f c a p a c i t o r . t h e u n i t c o n t a i n s 0 . 0 1 f i n t e r n a l c a p a c i t o r s . g u a r a n t e e d p a r a m e t e r t y p i c a l 0 t o 5 0 c - 5 5 t o + 8 5 c f r e q u e n c y ( m i n . ) 0 . 1 - 8 . 0 g h z 0 . 1 - 6 . 0 g h z 0 . 1 - 6 . 0 g h z i n p u t p o w e r r a n g e ( m i n . ) - 1 0 t o + 2 5 d b m - 5 t o + 2 0 d b m - 5 t o 2 + 0 d b m v s w r ( m a x . ) 1 . 2 : 1 ? 1 . 5 : 1 ? 1 . 5 : 1 ? s e n s i t i v i t y , v o u t ( m i n . ) 1 2 0 m v ? 9 0 m v ? 9 0 m v ? p o w e r f l a t n e s s ( m a x . ) 0 . 5 d b ^ 0 . 7 5 d b ^ 0 . 7 5 d b ^ t e m p e r a t u r e s t a b i l i t y ( m a x . ) 0 . 2 5 d b ? 0 . 5 d b ? 0 . 5 d b ? o u t p u t o f f s e t v o l t a g e , n o r f ( m a x . ) 0 . 5 m v 2 . 0 m v 2 . 0 m v 1 d b s q u a r e l a w d e p a r t u r e + 1 0 d b m t a n g e n t i a l s e n s i t i v i t y - 2 5 d b m ^ ^ p u l s e r e s p o n s e , p i n = + 5 d b m 1 . 5 s e c ? p u l s e r e s p o n s e , p i n = + 2 5 d b m 3 . 0 s e c ? m a x o u t p u t v o l t a g e v s - 1 v o l t s s u p p l y c u r r e n t , n o r f 2 + m a , 2 - m a s u p p l y c u r r e n t , p i n = + 2 5 d b m 1 0 + m a , 2 - m a * m e a s u r e d i n a 5 0 - o h m s y s t e m a t 5 v d c , 2 k ? | | 5 0 p f u n l e s s o t h e r w i s e s p e c i f i e d . ? p i n = + 5 d b m . ^ v o u t = 1 0 0 m v . ^ ^ 3 d b n f , 1 m h z b a n d w i d t h . ? 5 0 % r f t o 1 0 o r 9 0 % v i d e o .
t y p i c a l p e r f o r m a n c e 6 5 0 - 6 9 1 - 9 8 0 0 ? f a x : 6 5 0 - 9 6 2 - 6 8 4 5 ? u p d a t e s : w w w . t e l e d y n e m i c r o w a v e . c o m ? m i c r o w a v e @ t e l e d y n e . c o m d a q 6 1 0 3 10.0 1.0 0.1 0.01 0.001 0.0001 transfer curve vcc = +10 v i n p u t p o w e r - d b m -30 -20 -10 0 1 0 2 0 3 0 4 0 i n p u t p o w e r - d b m input flatness @ vo = 100 mv k e y : + 2 5 c + 8 5 c - 5 5 c 6.0 5.0 4.0 3.02.0 f r e q u e n c y - g h z 0.1 0.7 1.3 1.9 2 . 5 3 . 1 3 . 7 4 . 3 4 . 9 5 . 5 6 . 1 1.50 1.25 1.00 0.75 0.50 v s w r input vswr @ pin = +5 dbm f r e q u e n c y - g h z 0 .1 0.7 1.3 1.9 2 . 5 3 . 1 3 . 7 4 . 3 4 . 9 5 . 5 6 . 1 o u t p u t v o l t a g e - v o l t s p u l s e r e s p o n s e @ p i n = C 1 5 d b m p u l s e r e s p o n s e @ p i n = 0 d b m
|